

Contents

<i>Foreword by Graziano Curti</i>	page xii
<i>Preface</i>	xiv
<i>Acknowledgments</i>	xv
1 Coordinate Transformation	1
1.1 Homogeneous Coordinates	1
1.2 Coordinate Transformation in Matrix Representation	2
1.3 Rotation About an Axis	6
1.4 Rotational and Translational 4×4 Matrices	14
1.5 Examples of Coordinate Transformation	15
1.6 Application to Derivation of Curves	24
1.7 Application to Derivation of Surfaces	28
2 Relative Velocity	33
2.1 Vector Representation	33
2.2 Matrix Representation	39
2.3 Application of Skew-Symmetric Matrices	41
3 Centrodes, Axodes, and Operating Pitch Surfaces	44
3.1 The Concept of Centrodes	44
3.2 Pitch Circle	49
3.3 Operating Pitch Circles	50
3.4 Axodes in Rotation Between Intersected Axes	51
3.5 Axodes in Rotation Between Crossed Axes	52
3.6 Operating Pitch Surfaces for Gears with Crossed Axes	56
4 Planar Curves	59
4.1 Parametric Representation	59
4.2 Representation by Implicit Function	60
4.3 Tangent and Normal to a Planar Curve	60
4.4 Curvature of Planar Curves	68
5 Surfaces	78
5.1 Parametric Representation of Surfaces	78
5.2 Curvilinear Coordinates	78
5.3 Tangent Plane and Surface Normal	79

5.4 Representation of a Surface by Implicit Function	82
5.5 Examples of Surfaces	82
6 Conjugated Surfaces and Curves	97
6.1 Envelope to a Family of Surfaces: Necessary Conditions of Existence	97
6.2 Basic Kinematic Relations	102
6.3 Conditions of Nonundercutting	103
6.4 Sufficient Conditions for Existence of an Envelope to a Family of Surfaces	107
6.5 Contact Lines; Surface of Action	110
6.6 Envelope to Family of Contact Lines on Generating Surface Σ_1	112
6.7 Formation of Branches of Envelope to Parametric Families of Surfaces and Curves	114
6.8 Wildhaber's Concept of Limit Contact Normal	118
6.9 Fillet Generation	119
6.10 Two-Parameter Enveloping	124
6.11 Axes of Meshing	128
6.12 Knots of Meshing	134
6.13 Problems	137
7 Curvatures of Surfaces and Curves	153
7.1 Introduction	153
7.2 Spatial Curve in 3D-Space	153
7.3 Surface Curves	164
7.4 First and Second Fundamental Forms	175
7.5 Principal Directions and Curvatures	180
7.6 Euler's Equation	188
7.7 Gaussian Curvature; Three Types of Surface Points	189
7.8 Dupin's Indicatrix	193
7.9 Geodesic Line; Surface Torsion	194
8 Mating Surfaces: Curvature Relations, Contact Ellipse	202
8.1 Introduction	202
8.2 Basic Equations	203
8.3 Planar Gearing: Relation Between Curvatures	204
8.4 Direct Relations Between Principal Curvatures of Mating Surfaces	218
8.5 Direct Relations Between Normal Curvatures of Mating Surfaces	226
8.6 Diagonalization of Curvature Matrix	231
8.7 Contact Ellipse	234
9 Computerized Simulation of Meshing and Contact	241
9.1 Introduction	241
9.2 Predesign of a Parabolic Function of Transmission Errors	242
9.3 Local Synthesis	245

9.4	Tooth Contact Analysis	249
9.5	Application of Finite Element Analysis for Design of Gear Drives	257
9.6	Edge Contact	260
10	Spur Involute Gears	267
10.1	Introduction	267
10.2	Geometry of Involute Curves	268
10.3	Generation of Involute Curves by Tools	273
10.4	Tooth Element Proportions	278
10.5	Meshing of Involute Gear with Rack-Cutter	280
10.6	Relations Between Tooth Thicknesses Measured on Various Circles	285
10.7	Meshing of External Involute Gears	287
10.8	Contact Ratio	292
10.9	Nonstandard Gears	294
11	Internal Involute Gears	304
11.1	Introduction	304
11.2	Generation of Gear Fillet	305
11.3	Conditions of Nonundercutting	309
11.4	Interference by Assembly	314
12	Noncircular Gears	318
12.1	Introduction	318
12.2	Centrodes of Noncircular Gears	318
12.3	Closed Centrodes	323
12.4	Elliptical and Modified Elliptical Gears	326
12.5	Conditions of Centrode Convexity	329
12.6	Conjugation of an Eccentric Circular Gear with a Noncircular Gear	330
12.7	Identical Centrodes	331
12.8	Design of Combined Noncircular Gear Mechanism	333
12.9	Generation Based on Application of Noncircular Master-Gears	335
12.10	Enveloping Method for Generation	336
12.11	Evolute of Tooth Profiles	341
12.12	Pressure Angle	344
	Appendix 12.A: Displacement Functions for Generation by Rack-Cutter	345
	Appendix 12.B: Displacement Functions for Generation by Shaper	348
13	Cycloidal Gearing	350
13.1	Introduction	350
13.2	Generation of Cycloidal Curves	350
13.3	Equations of Cycloidal Curves	354
13.4	Camus' Theorem and Its Application	355
13.5	External Pin Gearing	359
13.6	Internal Pin Gearing	365

13.7 Overcentrode Cycloidal Gearing	367
13.8 Root's Blower	369
14 Involute Helical Gears with Parallel Axes	375
14.1 Introduction	375
14.2 General Considerations	375
14.3 Screw Involute Surface	377
14.4 Meshing of a Helical Gear with a Rack	382
14.5 Meshing of Mating Helical Gears	392
14.6 Conditions of Nonundercutting	396
14.7 Contact Ratio	398
14.8 Force Transmission	399
14.9 Results of Tooth Contact Analysis (TCA)	402
14.10 Nomenclature	403
15 Modified Involute Gears	404
15.1 Introduction	404
15.2 Axodes of Helical Gears and Rack-Cutters	407
15.3 Profile-Crowned Pinion and Gear Tooth Surfaces	411
15.4 Tooth Contact Analysis (TCA) of Profile-Crowned Pinion and Gear Tooth Surfaces	414
15.5 Longitudinal Crowning of Pinion by a Plunging Disk	419
15.6 Grinding of Double-Crowned Pinion by a Worm	424
15.7 TCA of Gear Drive with Double-Crowned Pinion	430
15.8 Undercutting and Pointing	432
15.9 Stress Analysis	435
16 Involute Helical Gears with Crossed Axes	441
16.1 Introduction	441
16.2 Analysis and Simulation of Meshing of Helical Gears	443
16.3 Simulation of Meshing of Crossed Helical Gears	452
16.4 Generation of Conjugated Tooth Surfaces of Crossed Helical Gears	455
16.5 Design of Crossed Helical Gears	458
16.6 Stress Analysis	465
Appendix 16.A: Derivation of Shortest Center Distance for Canonical Design	467
Appendix 16.B: Derivation of Equation of Canonical Design $f(\gamma_o, \alpha_{on}, \lambda_{b1}, \lambda_{b2}) = 0$	472
Appendix 16.C: Relations Between Parameters α_{pt} and α_{pn}	473
Appendix 16.D: Derivation of Equation (16.5.5)	473
Appendix 16.E: Derivation of Additional Relations Between α_{ot1} and α_{ot2}	474
17 New Version of Novikov–Wildhaber Helical Gears	475
17.1 Introduction	475
17.2 Axodes of Helical Gears and Rack-Cutter	478
17.3 Parabolic Rack-Cutters	479
17.4 Profile-Crowned Pinion and Gear Tooth Surfaces	482

17.5	Tooth Contact Analysis (TCA) of Gear Drive with Profile-Crowned Pinion	485
17.6	Longitudinal Crowning of Pinion by a Plunging Disk	487
17.7	Generation of Double-Crowned Pinion by a Worm	491
17.8	TCA of a Gear Drive with a Double-Crowned Pinion	497
17.9	Undercutting and Pointing	500
17.10	Stress Analysis	502
18	Face-Gear Drives	508
18.1	Introduction	508
18.2	Axodes, Pitch Surfaces, and Pitch Point	510
18.3	Face-Gear Generation	512
18.4	Localization of Bearing Contact	512
18.5	Equations of Face-Gear Tooth Surface	515
18.6	Conditions of Nonundercutting of Face-Gear Tooth Surface (Generated by Involute Shaper)	519
18.7	Pointing of Face-Gear Teeth Generated by Involute Shaper	522
18.8	Fillet Surface	524
18.9	Geometry of Parabolic Rack-Cutters	525
18.10	Second Version of Geometry: Derivation of Tooth Surfaces of Shaper and Pinion	527
18.11	Second Version of Geometry: Derivation of Face-Gear Tooth Surface	529
18.12	Design Recommendations	529
18.13	Tooth Contact Analysis (TCA)	531
18.14	Application of Generating Worm	535
18.15	Stress Analysis	541
19	Worm-Gear Drives with Cylindrical Worms	547
19.1	Introduction	547
19.2	Pitch Surfaces and Gear Ratio	548
19.3	Design Parameters and Their Relations	552
19.4	Generation and Geometry of ZA Worms	557
19.5	Generation and Geometry of ZN Worms	561
19.6	Generation and Geometry of ZI (Involute) Worms	574
19.7	Geometry and Generation of K Worms	581
19.8	Geometry and Generation of F-I Worms (Version I)	590
19.9	Geometry and Generation of F-II Worms (Version II)	597
19.10	Generalized Helicoid Equations	601
19.11	Equation of Meshing of Worm and Worm-Gear Surfaces	603
19.12	Area of Meshing	606
19.13	Prospects of New Developments	609
20	Double-Enveloping Worm-Gear Drives	614
20.1	Introduction	614
20.2	Generation of Worm and Worm-Gear Surfaces	614
20.3	Worm Surface Equations	618
20.4	Equation of Meshing	620

20.5 Contact Lines	622
20.6 Worm-Gear Surface Equations	622
21 Spiral Bevel Gears	627
21.1 Introduction	627
21.2 Basic Ideas of the Developed Approach	628
21.3 Derivation of Gear Tooth Surfaces	633
21.4 Derivation of Pinion Tooth Surface	644
21.5 Local Synthesis and Determination of Pinion Machine-Tool Settings	649
21.6 Relationships Between Principal Curvatures and Directions of Mating Surfaces	656
21.7 Simulation of Meshing and Contact	661
21.8 Application of Finite Element Analysis for the Design of Spiral Bevel Gear Drives	665
21.9 Example of Design and Optimization of a Spiral Bevel Gear Drive	666
21.10 Compensation of the Shift of the Bearing Contact	676
22 Hypoid Gear Drives	679
22.1 Introduction	679
22.2 Axodes and Operating Pitch Cones	679
22.3 Tangency of Hypoid Pitch Cones	680
22.4 Auxiliary Equations	682
22.5 Design of Hypoid Pitch Cones	685
22.6 Generation of Face-Milled Hypoid Gear Drives	690
23 Planetary Gear Trains	697
23.1 Introduction	697
23.2 Gear Ratio	697
23.3 Conditions of Assembly	703
23.4 Phase Angle of Planet Gears	707
23.5 Efficiency of a Planetary Gear Train	709
23.6 Modifications of Gear Tooth Geometry	711
23.7 Tooth Contact Analysis (TCA)	712
23.8 Illustration of the Effect of Regulation of Backlash	716
24 Generation of Helicoids	718
24.1 Introduction	718
24.2 Generation by Finger-Shaped Tool: Tool Surface is Given	718
24.3 Generation by Finger-Shaped Tool: Workpiece Surface is Given	723
24.4 Generation by Disk-Shaped Tool: Tool Surface is Given	726
24.5 Generation by Disk-Shaped Tool: Workpiece Surface is Given	730
25 Design of Flyblades	734
25.1 Introduction	734
25.2 Two-Parameter Form Representation of Worm Surfaces	735

25.3 Three-Parameter Form Representation of Worm Surfaces	737
25.4 Working Equations	738
26 Generation of Surfaces by CNC Machines	746
26.1 Introduction	746
26.2 Execution of Motions of CNC Machines	747
26.3 Generation of Hypoid Pinion	750
26.4 Generation of a Surface with Optimal Approximation	752
27 Overwire (Ball) Measurement	769
27.1 Introduction	769
27.2 Problem Description	769
27.3 Measurement of Involute Worms, Involute Helical Gears, and Spur Gears	773
27.4 Measurement of Asymmetric Archimedes Screw	779
28 Minimization of Deviations of Gear Real Tooth Surfaces	782
28.1 Introduction	782
28.2 Overview of Measurement and Modeling Method	783
28.3 Equations of Theoretical Tooth Surface Σ_t	784
28.4 Coordinate Systems Used for Coordinate Measurements	785
28.5 Grid and Reference Point	786
28.6 Deviations of the Real Surface	787
28.7 Minimization of Deviations	787
<i>References</i>	789
<i>Index</i>	795