

CONTENTS

SECTION 1: ENGINEERING DESIGN

Genetic Algorithms as a Computational Theory of Conceptual Design <i>D.E. Goldberg</i>	3
Pre-schematic Electronic Circuit Designer <i>D.D. Harris, T. McNeill, P.H. Sydenham</i>	17
Expert Systems in Mechanical Engineering Design <i>J. Duhovnik, R. Žavbi</i>	31
Numerical Methods in AI-Based Design Systems <i>K. Furuta, T. Smithers</i>	45
A Knowledge Based System to Automate Manufacturing and Design Engineering <i>A. García-Crespo, M. Cortina</i>	59
HYPERARCHITECTURES - A New Multidimensional and Humanistic Scheme for CAAD <i>T. Oksala</i>	71
An Integrated Approach to the Automation of Class Three Electronic Design Problems <i>T. McNeill</i>	81
Design Brief Expansion Tool <i>J. Forster, P. Van Nest, M. Cartmell, P. Fothergill</i>	95
An Integrated System for Constructibility Assessment of a Design Detail <i>S. Alkass, A. Abdou</i>	111
Knowledge Based System for Geometry Features Reasoning from Three-Dimensional CAD Data <i>B.V. Jerbic, B.R. Vranjes, Z.A. Kunica</i>	125
Insights into Cooperative Group Design: Experience with the LAN Designer System <i>M. Klein, S.C.-Y. Lu</i>	143

Decomposition of Design Activities <i>A. Kusiak, J. Wang</i>	163
Mixpert: A Maintainable Configurer's Assistant <i>C.E. Johnson, M.D. Cope</i>	179
Design of Breakwaters using Knowledge-Based Techniques <i>J. Murphy, B. O'Flaherty, A.W. Lewis</i>	199
Controlling Database Integrity <i>R. Threadgold</i>	219
Intelligent Conceptual Design for Mechanical Systems <i>Q. Wang, J. Zhou, M. Rao</i>	239
Design and Implementation of a Prototype Intelligent System for Evolution Design of Dynamic Objects <i>V. Tsybatov</i>	257
Evolutionary Inheritance and Delegation as Mechanisms in Knowledge Programming for Engineering Product Design <i>A. Demaid, J. Zucker</i>	269
An Expert System for Ergonomic Workplace Design Using a Genetic Algorithm <i>D.T. Pham, H.H. Onder</i>	287
SECTION 2: ENGINEERING ANALYSIS AND SIMULATION	
Hierarchical Qualitative Simulation for Large Scale Dynamical Systems <i>K. Okuda, T. Ushio</i>	301
Intelligent Support of Flight Experimental Design and Analysis <i>L. Berestov, A. Kozlov, V. Melnik, V. Vid, V. Denisov, V. Khabarov</i>	319
A Knowledge Based System for Material Preheat in Welding <i>W. McEwan, M. Abou-Ali, C. Irgens</i>	329
HardSys/HardDraw: A Smart Topology Based Electromagnetic Interaction Modelling Tool <i>J. LoVetri, W.H. Henneker</i>	343
Drilling Tool Selection Aid System <i>O. Leboulleux, M. Hittinger, S. Serfaty</i>	367

Structured Selection Problem in Pavement Rehabilitation <i>J.J. Hajek</i>	389
HyperQ/Process: An Expert System for Manufacturing Process Selection <i>K. Ishii, S. Krizan, C.H. Lee, R.A. Miller</i>	405
Neural Networks in the Colour Industry <i>J.M. Bishop, M.J. Bushnell, A. Usher, S. Westland</i>	423
The Design of a Simulator System for Educating Engineers <i>M. Quafafou, O. Dubant, J.P. Rolley, P. Prévot</i>	435
SECTION 3: PLANNING AND SCHEDULING	
Process Parameter Origination using a Combination of Knowledge Based Paradigms <i>W.A. Taylor</i>	457
Real-Time Means Planning Ahead to Look Back <i>R. Milne, E. Bain, M. Drummond</i>	477
Resource Leveling in PERT by Neural Network <i>T. Shimazaki, K. Sano, Y. Tuchiya</i>	487
CONTRALTO: Constraint Reasoning Applied to Logistics for Transport Organisations <i>C. Guimaraes, J.-M. Le Dizes</i>	499
RAPS - A Rule-based Language for Specifying Resource Allocation and Time-tabling Problems <i>G. Solotorevsky, E. Gudes, A. Meisels</i>	515
KBS in Marine Collision Avoidance <i>F. Coenen, P. Smeaton</i>	529
An Expert System Tool to Aid Production Schedulers <i>C. Ready</i>	541
SECTION 4: MONITORING AND CONTROL	
A Real Time Interpretation Model <i>M. Blaquiere, F. Evrard, A. Awada</i>	553
A New Method to Obtain the Relation Matrix for Fuzzy Logic Controllers <i>D.T. Pham, D. Karaboga</i>	567

Using Process Knowledge for Adaptive User Interfaces <i>R. Denzer, H. Hagen, G. Kira, F. Koob</i>	583
Intelligent Machine Tools: An Application of Neural Networks to the Control of Cutting Tool Performance <i>H.A. Epstein, P.K. Wright</i>	597
Studies in A.I. Augmented Control Systems using the BOXES Methodology <i>D.W. Russell</i>	611
Artificial Neural Network for Alarm-State Monitoring <i>N. Dodd</i>	623
Design and Experimentation of a Shell to Develop Knowledge Based Systems for Spacecraft Control <i>S. Gusmeroli, M. Monti</i>	633
Coupling Expert Systems on Control Engineering Software <i>H. Hyötyniemi</i>	653
Real-Time Drought Control of Storage Reservoir by Combining Middle and Long-Term Weather Forecast and Fuzzy Inference <i>S. Ikebuchi, T. Kojiri</i>	665
Vehicles Controlling: Representation of Knowledge and Algorithms of Multi-Agent Decision <i>P. Mourou, B. Fade</i>	683
SECTION 5: DIAGNOSIS, SAFETY AND RELIABILITY	
DIPLOMA - The Seal of Approval <i>K. Oldham, R.P. Main, J.M. Cooper, N.F. Doherty</i>	701
Knowledge Based System for Fault Diagnosis of a Hot Strip Mill Downcoiler <i>M.H. Littlejohn</i>	723
Towards an Automated FMEA Assistant <i>A.R.T. Ormsby, J.E. Hunt, M.H. Lee</i>	739
Generic Diagnosis for Mechanical Devices <i>M.P. Feret, J.I. Glasgow</i>	753
Fault Detection in Digital Filters for Satellite Systems <i>K. Raghunandan, F.P. Coakley</i>	769

SECTION 6: ROBOTICS

The Co-operative Behavior of Multirobot Systems 791
A. Neki, K. Ouriachi, M. Bourton

Piecewise Straight-Line Correlation Algorithm 805
for Feedback Navigation Systems with
Robotic Applications
A. Berman, J. Dayan

A Multiple Views Robotic Stereo Method for 825
3-D Shape Perception
M.A. Arlotto, M.N. Granieri

SECTION 7: KNOWLEDGE ELICITATION AND REPRESENTATION

Data Acquisition and Expert Knowledge Elicitation 839
for Expert Systems in Construction
J. Christian

Representing the Engineering Description 847
of Soils in Knowledge Based Systems
D.G. Toll, M. Moula, N. Vaptimas

SECTION 8: THEORY AND METHODS FOR SYSTEM DEVELOPMENT

Expert System Verification and Validation 859
Part I: Defining the Concepts
T.W. Satre, J.G. Massey

Expert System Verification and Validation 873
Part II: Implementing the Concepts
J.G. Massey, T.W. Satre, C.D. Ray

Development of a Systems Theory using 885
Natural Language
J. Korn, F. Huss, J.D. Cumbers

Computer Aided Validation Expert System 895
R.J. Smith

Fuzzy Boxes As An Alternative to Neural 903
Networks for Difficult Control Problems
N. Woodcock, N.J. Hallam, P.D. Picton

Optimal Solutions for Deep and Shallow 921
Engineering Expert Systems
K. Preiss, O. Shai

Optimisation of Neural-Network Structure using Genetic Techniques <i>N. Dodd</i>	939
Interval Algebras and Order of Magnitude Reasoning <i>S. Parsons</i>	945
An Algorithm for the Automated Generation of Rheological Models <i>A.C. Capelo, L. Ironi, S. Tentoni</i>	963
Expert's Interface in a Generator of Process Supervision Systems: Relational Management of an Object-Oriented Knowledge <i>J. Pastor, P. Grivart, H. Grandjean</i>	981
Default Reasoning in DIPSY-E System <i>M. Kantardžić, V. Okanović, A. Filipović, H. Glavić</i>	997
Knowledge-Based Modelling Systems for Research of Engineering Objects <i>V. Vittikh</i>	1011
Integration of Natural Language in Developing the Inference Mechanism Provides Powerful Benefits for Engineering Applications <i>E.L. Parkinson, A.K. Sunol</i>	1027
Organizational System as Hierarchy of Information Processes <i>S. Gudas</i>	1037
Authors' Index	1051