

CONTENTS

Preface

xi

PART ONE **THE RESISTIVE CIRCUIT**

Chapter One	
Definitions and Units	3
1-1 Introduction	3
1-2 Systems of Units	5
1-3 The Unit of Charge	9
1-4 Current, Voltage, and Power	11
1-5 Types of Circuits and Circuit Elements	20
Chapter Two	
Experimental Laws and Simple Circuits	30
2-1 Introduction	30
2-2 Ohm's Law	31
2-3 Kirchhoff's Laws	34
2-4 Analysis of a Single-Loop Circuit	41

2-5 The Single Node-Pair Circuit	46
2-6 Resistance and Source Combination	49
2-7 Voltage and Current Division	53

Chapter Three

Some Useful Techniques of Circuit Analysis	66
---	-----------

3-1 Introduction	66
3-2 Nodal Analysis	67
3-3 Mesh Analysis	78
3-4 Source Transformations	86
3-5 Linearity and Superposition	91
3-6 Thévenin's and Norton's Theorems	97
3-7 Trees and General Nodal Analysis	106
3-8 Links and Loop Analysis	113

PART TWO**THE TRANSIENT CIRCUIT****Chapter Four**

Inductance and Capacitance	135
-----------------------------------	------------

4-1 Introduction	135
4-2 The Inductor	136
4-3 Integral Relationships for the Inductor	141
4-4 The Capacitor	146
4-5 Inductance and Capacitance Combinations	152
4-6 Duality	158
4-7 Linearity and Its Consequences Again	163

Chapter Five

Source-free <i>RL</i> and <i>RC</i> Circuits	170
---	------------

5-1 Introduction	170
5-2 The Simple <i>RL</i> Circuit	172
5-3 Properties of the Exponential Response	176
5-4 A More General <i>RL</i> Circuit	179
5-5 The Simple <i>RC</i> Circuit	183
5-6 A More General <i>RC</i> Circuit	186

Chapter Six

The Application of the Unit-Step Forcing Function	196
--	------------

6-1 Introduction	196
6-2 The Unit-Step Forcing Function	197

6-3 A First Look at the Driven <i>RL</i> Circuit	202
6-4 The Natural and the Forced Response	206
6-5 <i>RL</i> Circuits	209
6-6 <i>RC</i> Circuits	215

Chapter Seven**The *RLC* Circuit****225**

7-1 Introduction	225
7-2 The Source-free Parallel Circuit	227
7-3 The Overdamped Parallel <i>RLC</i> Circuit	231
7-4 Critical Damping	236
7-5 The Underdamped Parallel <i>RLC</i> Circuit	238
7-6 The Source-free Series <i>RLC</i> Circuit	244
7-7 The Complete Response of the <i>RLC</i> Circuit	248

PART THREE**SINUSOIDAL ANALYSIS****Chapter Eight****The Sinusoidal Forcing Function****265**

8-1 Introduction	265
8-2 Characteristics of Sinusoids	268
8-3 Forced Response to Sinusoidal Forcing Functions	271

Chapter Nine**The Phasor Concept****279**

9-1 Introduction	279
9-2 The Complex Forcing Function	280
9-3 The Phasor	285
9-4 Phasor Relationships for <i>R</i> , <i>L</i> , and <i>C</i>	290
9-5 Impedance	296
9-6 Admittance	300

Chapter Ten**The Sinusoidal Steady-State Response****306**

10-1 Introduction	306
10-2 Nodal, Mesh, and Loop Analysis	307
10-3 Superposition, Source Transformations, and Thevenin's Theorem	310
10-4 Phasor Diagrams	312
10-5 Response as a Function of ω	317

Chapter Eleven	
Average Power and RMS Values	328
11-1 Introduction	328
11-2 Instantaneous Power	329
11-3 Average Power	332
11-4 Effective Values of Current and Voltage	342
11-5 Apparent Power and Power Factor	345
11-6 Complex Power	350
Chapter Twelve	
Polyphase Circuits	361
12-1 Introduction	361
12-2 Single-Phase Three-Wire Systems	365
12-3 Three-Phase Y-Y Connection	369
12-4 The Delta (Δ) Connection	375
12-5 Use of the Wattmeter	380
12-6 Power Measurement in Three-Phase Systems	382
 PART FOUR	
COMPLEX FREQUENCY	
Chapter Thirteen	
Complex Frequency	397
13-1 Introduction	397
13-2 Complex Frequency	399
13-3 The Damped Sinusoidal Forcing Function	403
13-4 $Z(s)$ and $Y(s)$	407
13-5 Frequency Response as a Function of σ	411
13-6 The Complex-Frequency Plane	417
13-7 Natural Response and the s Plane	428
Chapter Fourteen	
Frequency Response	442
14-1 Introduction	442
14-2 Parallel Resonance	444
14-3 More about Parallel Resonance	453
14-4 Series Resonance	460
14-5 Other Resonant Forms	462
14-6 Scaling	471

PART FIVE
TWO-PORT NETWORKS

Chapter Fifteen	
Magnetically Coupled Circuits	485
15-1 Introduction	485
15-2 Mutual Inductance	486
15-3 Energy Considerations	495
15-4 The Linear Transformer	499
15-5 The Ideal Transformer	505

Chapter Sixteen	
Two-Port Networks	525
16-1 Introduction	525
16-2 One-Port Networks	526
16-3 Admittance Parameters	530
16-4 Some Equivalent Networks	537
16-5 Impedance Parameters	545
16-6 Hybrid Parameters	550

PART SIX
NETWORK ANALYSIS

Chapter Seventeen	
State-variable Analysis	565
17-1 Introduction	565
17-2 State Variables and Normal-Form Equations	566
17-3 Writing a Set of Normal-Form Equations	570
17-4 The Use of Matrix Notation	579
17-5 Solution of the First-Order Equation	583
17-6 The Solution of the Matrix Equation	588
17-7 A Further Look at the State-Transition Matrix	591
17-8 Solution of the Second-Order System	594

Chapter Eighteen	
Fourier Analysis	607
18-1 Introduction	607
18-2 Trigonometric Form of the Fourier Series	610
18-3 The Use of Symmetry	617
18-4 Complete Response to Periodic Forcing Functions	623
18-5 Complex Form of the Fourier Series	627

Chapter Nineteen	
Fourier Transforms	641
19-1 Introduction	641
19-2 Definition of the Fourier Transform	642
19-3 Some Properties of the Fourier Transform	646
19-4 The Unit-Impulse Function	650
19-5 Fourier Transform Pairs for Some Simple Time Functions	656
19-6 The Fourier Transform of a General Periodic Time Function	662
19-7 Convolution and Circuit Response in the Time Domain	664
19-8 The System Function and Response in the Frequency Domain	669
19-9 The Physical Significance of the System Function	673
Chapter Twenty	
Laplace Transform Techniques	684
20-1 Introduction	684
20-2 Definition of the Laplace Transform	686
20-3 Laplace Transforms of Some Simple Time Functions	689
20-4 Several Basic Theorems for the Laplace Transform	692
20-5 Convolution Again	699
20-6 Time-Shift and Periodic Functions	703
20-7 Shifting, Differentiation, Integration, and Scaling in the Frequency Domain	709
20-8 The Initial-Value and Final-Value Theorems	713
20-9 The Transfer Function $H(s)$	716
20-10 The Complete Response	719
PART SEVEN	
APPENDIXES	
Appendix One	
Determinants	733
Appendix Two	
A Proof of Thevenin's Theorem	738
Appendix Three	
Complex Numbers	742
Appendix Four	
Answers to Selected Problems	757
Index	769