

CONTENTS

Preface	xi
Acknowledgments	xix
Notes for Instructors	xxi

PART I HISTORICAL ROOTS: FROM HEAT ENGINES TO COSMOLOGY

1 THE BASIC CONCEPTS	3
Introduction	3
1.1 Thermodynamic Systems	4
1.2 Equilibrium and Nonequilibrium Systems	5
1.3 Temperature, Heat and Quantitative Laws of Gases	7
1.4 States of Matter and the van der Waals Equation	17
Appendix 1.1: Partial Derivatives	22
Appendix 1.2: Mathematica Codes	23
References	25
Data Sources	25
Examples	25
Exercises	27
2 THE FIRST LAW OF THERMODYNAMICS	31
The Idea of Energy Conservation Amidst New Discoveries	31
2.1 The Nature of Heat	32
2.2 The First Law of Thermodynamics: Conservation of Energy	36
2.3 Elementary Applications of the First Law	45
2.4 Thermochemistry: Conservation of Energy in Chemical Reactions	49
2.5 Extent of Reaction: A State Variable for Chemical Systems	57
2.6 Conservation of Energy in Nuclear Reactions	59
References	61
Data Sources	62
Examples	62
Exercises	64

3 THE SECOND LAW OF THERMODYNAMICS AND THE ARROW OF TIME	67
3.1 The Birth of the Second Law	67
3.2 The Absolute Scale of Temperature	76
3.3 The Second Law and the Concept of Entropy	78
3.4 Entropy, Reversible and Irreversible Processes	84
3.5 Examples of Entropy Changes due to Irreversible Processes	92
3.6 Entropy Changes Associated with Phase Transformations	95
3.7 Entropy of an Ideal Gas	96
3.8 Remarks on the Second Law and Irreversible Processes	97
References	98
Data Sources	99
Examples	99
Exercises	100
4 ENTROPY IN THE REALM OF CHEMICAL REACTIONS	103
4.1 Chemical Potential and Affinity: The Driving Force of Chemical Reactions	103
4.2 General Properties of Affinity	112
4.3 Entropy Production due to Diffusion	113
4.4 General Properties of Entropy	115
References	118
Example	118
Exercises	119
PART II EQUILIBRIUM THERMODYNAMICS	
5 EXTREMUM PRINCIPLES AND GENERAL THERMODYNAMIC RELATIONS	123
Extremum Principles in Nature	123
5.1 Extremum Principles and the Second Law	123
5.2 General Thermodynamic Relations	133
5.3 Gibbs Free Energy of Formation and Chemical Potential	136
5.4 Maxwell Relations	139
5.5 Extensivity and Partial Molar Quantities	142
5.6 Surface Tension	143
References	147
Data Sources	147
Examples	148
Exercises	149

6 BASIC THERMODYNAMICS OF GASES, LIQUIDS AND SOLIDS	153
Introduction	153
6.1 Thermodynamics of Ideal Gases	153
6.2 Thermodynamics of Real Gases	157
6.3 Thermodynamic Quantities for Pure Liquids and Solids	167
Reference	170
Data Sources	170
Examples	170
Exercises	171
7 PHASE CHANGE	175
Introduction	175
7.1 Phase Equilibrium and Phase Diagrams	175
7.2 The Gibbs Phase Rule and Duhem's Theorem	181
7.3 Binary and Ternary Systems	183
7.4 Maxwell's Construction and the Lever Rule	189
7.5 Phase Transitions	191
References	194
Data Sources	195
Examples	195
Exercises	196
8 SOLUTIONS	199
8.1 Ideal and Nonideal Solutions	199
8.2 Colligative Properties	203
8.3 Solubility Equilibrium	210
8.4 Mixing and Excess Functions	216
8.5 Azeotropy	221
References	222
Data Sources	222
Examples	222
Exercises	224
9 CHEMICAL TRANSFORMATIONS	227
9.1 Transformations of Matter	227
9.2 Chemical Reaction Rates	228
9.3 Chemical Equilibrium and the Law of Mass Action	235
9.4 The Principle of Detailed Balance	240
9.5 Entropy Production due to Chemical Reactions	242
Appendix 9.1 Mathematica Codes	247
References	249

Data Sources	249
Examples	250
Exercises	251
10 FIELDS AND INTERNAL DEGREES OF FREEDOM	255
The Many Faces of Chemical Potential	255
10.1 Chemical Potential in a Field	255
10.2 Membranes and Electrochemical Cells	261
10.3 Diffusion	269
10.4 Chemical Potential for an Internal Degree of Freedom	275
References	279
Data Sources	279
Examples	280
Exercises	280
11 THERMODYNAMICS OF RADIATION	283
Introduction	283
11.1 Energy Density and Intensity of Thermal Radiation	283
11.2 The Equation of State	287
11.3 Entropy and Adiabatic Processes	289
11.4 Wien's Theorem	291
11.5 Chemical Potential for Thermal Radiation	292
11.6 Matter, Radiation and Zero Chemical Potential	294
References	296
Example	296
Exercises	297
PART III FLUCTUATIONS AND STABILITY	
12 THE GIBBS STABILITY THEORY	301
12.1 Classical Stability Theory	301
12.2 Thermal Stability	302
12.3 Mechanical Stability	304
12.4 Stability and Fluctuations in Mole Number	305
References	308
Exercises	308
13 CRITICAL PHENOMENA AND CONFIGURATIONAL HEAT CAPACITY	309
Introduction	309
13.1 Stability and Critical Phenomena	309
13.2 Stability and Critical Phenomena in Binary Solutions	311

13.3	Configurational Heat Capacity	315
Further Reading		317
Exercises		317
14	STABILITY AND FLUCTUATIONS BASED ON ENTROPY PRODUCTION	319
14.1	Stability and Entropy Production	319
14.2	Thermodynamic Theory of Fluctuations	323
References		330
Exercises		330
PART IV LINEAR NONEQUILIBRIUM THERMODYNAMICS		
15	NONEQUILIBRIUM THERMODYNAMICS: THE FOUNDATIONS	333
15.1	Local Equilibrium	333
15.2	Local Entropy Production	336
15.3	Balance Equation for Concentration	337
15.4	Energy Conservation in Open Systems	339
15.5	The Entropy Balance Equation	344
Appendix 15.1:	Entropy Production	346
References		349
Exercises		349
16	NONEQUILIBRIUM THERMODYNAMICS: THE LINEAR REGIME	351
16.1	Linear Phenomenological Laws	351
16.2	Onsager Reciprocal Relations and the Symmetry Principle	353
16.3	Thermoelectric Phenomena	358
16.4	Diffusion	362
16.5	Chemical Reactions	367
16.6	Heat Conduction in Anisotropic Solids	373
16.7	Electrokinetic Phenomena and the SAXEN Relations	374
16.8	Thermal Diffusion	377
References		381
Further Reading		381
Exercises		382
17	NONEQUILIBRIUM STATIONARY STATES AND THEIR STABILITY: LINEAR REGIME	385
17.1	Stationary States under Nonequilibrium Conditions	385
17.2	The Theorem of Minimum Entropy Production	392

17.3	Time Variation of Entropy Production and the Stability of Stationary States	402
	References	404
	Exercises	404
PART V ORDER THROUGH FLUCTUATIONS		
18	NONLINEAR THERMODYNAMICS	409
18.1	Far-From-Equilibrium Systems	409
18.2	General Properties of Entropy Production	409
18.3	Stability of Nonequilibrium Stationary States	411
18.4	Linear Stability Analysis	417
	Appendix 18.1	421
	Appendix 18.2	422
	References	425
	Exercises	425
19	DISSIPATIVE STRUCTURES	427
19.1	The Constructive Role of Irreversible Processes	427
19.2	Loss of Stability, Bifurcation and Symmetry Breaking	428
19.3	Chiral Symmetry Breaking and Life	431
19.4	Chemical Oscillations	438
19.5	Turing Structures and Propagating Waves	444
19.6	Structural Instability and Biochemical Evolution	450
	Appendix 19.1 Mathematica Codes	452
	References	454
	Further Reading	455
	Exercises	456
20	WHERE DO WE GO FROM HERE?	459
	References	466
POSTFACE		467
STANDARD THERMODYNAMIC PROPERTIES		469
PHYSICAL CONSTANTS AND DATA		477
INDEX		479