

3.3.3 Conditions for Equilibrium of a Rigid Body	33
3.3.3.1 Conditions for a Geometrically Similar System	33
3.3.3.2 Conditions for a Rigid Body	33
3.4 Free Body Diagram (FBD)	34
3.5 Reaction at Supports of a Rigid Body	35
3.6 Work and the Principle of Virtual Work	36
3.6.1 Work	36
3.6.2 Principles of Virtual Work	38
Preface	vii

Contents

1 INTRODUCTION	1
2 FORCE SYSTEMS	11
2.1 Introduction	11
2.2 The Concept of a Rigid Body	11
2.3 The Concept of a Force	12
2.4 Transmissibility of a Force	14
2.5 Classification of Force Systems	15
2.6 Composition and Resolution of Forces	15
2.7 Body and Surface Forces	18
2.8 Distributed and Concentrated Forces	18
2.9 Rate of Application of Forces	20
2.10 Moment of a Force	21
2.11 Moment of a Couple	25
2.12 Resolution of a Force into a Force and a Couple	29
2.13 Resultants of Force Systems	31
3 EQUILIBRIUM OF RIGID BODIES	37
3.1 Introduction	37
3.2 Necessary and Sufficient Conditions of Equilibrium of Rigid Bodies	38
3.3 Simplified Use of Equilibrium Equations for Special Situations	39
3.3.1 Conditions for equilibrium of a two force member	40

3.3.2 Conditions for Equilibrium of a Three Force Member 40	3.3.3 Conditions for Equilibrium of a Rigid Body Under the Action of a General Co-planar System of Forces 42
3.4 Free-body Diagram (FBD) 43	3.5 Reactions at Supports for a Two-dimensional Structure 45
3.6 Work and the Principle of Virtual Work 57	3.6.1 Work 57
	3.6.2 Principle of Virtual Work 58

4 TRUSSES AND CABLES

71

4.1 Introduction 71	4.2 Trusses 71
4.3 Idealization of Joints 74	4.4 Common Types of Trusses 77
4.5 Classification of Statically Determinate and Statically Indeterminate Trusses 78	4.6 Analysis of Statically Determinate Trusses 80
4.6.1 Method of Joints 80	4.6.2 Method of Sections 85
4.6.3 Discussion of Method of Joints and Method of Sections 89	4.7 Analysis of Simple Statically Indeterminate Trusses 89
4.8 Role of Computers in Truss Analysis 91	4.9 Flexible Cables 97
4.10 Flexible Cable Supporting Concentrated Loads in the Transverse Direction 97	4.11 Flexible Cable Supporting Distributed Loads in the Transverse Direction 101
4.12 Uniformly Loaded Cables 104	4.12.1 Parabolic Cables 104
	4.12.2 Catenary Cable 106
	4.12.3 Approximation of Catenary Cable as a Parabolic Cable for Small Sag to Span Ratios 109
	4.12.4 Historical Background of the Development of Solution for Catenary Cable 110

5 LAWS OF FRICTION AND SIMPLE MACHINES

121

- 5.1 Introduction 121
- 5.2 Definition of Friction 121
- 5.3 External Friction 122
- 5.4 Internal Friction 123
 - 5.4.1 Fluid Friction 123
 - 5.4.2 Solid Friction 123
- 5.5 The Laws of Dry Friction 124
- 5.6 Mechanism of Static and Dynamic Friction 129
- 5.7 Further Comments on Static Friction Coefficient 130
- 5.8 Guidelines for Solving a Problem Involving Friction 132
- 5.9 Analysis of Simple Machines 135
 - 5.9.1 Definition of a Machine 135
 - 5.9.2 Mechanical Advantage 137
 - 5.9.3 Velocity Ratio 138
 - 5.9.4 Mechanical Efficiency 139
- 5.10 Applications of Friction in Machines 139
 - 5.10.1 Wedges 139
 - 5.10.2 Screw Jack 142

6 DYNAMICS

153

- 6.1 Introduction 153
- 6.2 Force 154
- 6.3 Reference Frames and Coordinate Systems 155
- 6.4 Kinematics 157
- 6.5 Relative Motion 173
- 6.6 Kinetics of a Particle in Rectilinear Motion 179
- 6.7 Units 182
- 6.8 Equations of Motion for Rectilinear Translation 183
- 6.9 Application of the Equations of Rectilinear Motion 184
- 6.10 D'Alembert's Principle - Dynamics in Non-Inertial Frames 197

6.11 Integrated Forms of Newton's Law 203
 6.11.1 The Time Integral: The Impulse-Momentum Principle 204
 6.11.2 Integration over Displacement: The Work-Energy Principle 205
 6.11.3 Power and Efficiency 206
 6.12 Conservation Theorems 207
 6.13 The Motion of Projectiles 220
 6.14 Moment of Momentum and its Conservation 226
 6.15 Motion under a Central Force 228
 6.16 Fixed Axis Rotation of Rigid Bodies 235
 6.17 Free Vibrations 247

7 STRESS AND STRAIN

269

7.1 Introduction 269
 7.1.1 External Loads (Forces) 269
 7.1.2 Static Loads 269
 7.1.3 Dynamic Loads 270
 7.1.4 Surface Forces 270
 7.1.5 Body Forces 270
 7.2 Stress 271
 7.2.1 Stresses on an Inclined Plane 276
 7.3 Strain 277
 7.3.1 Normal Strain 277
 7.3.2 Shear Strain 279
 7.4 Poisson's Ratio 280
 7.5 Elastic and Shear Moduli 280

8 GENERALIZED HOOKE'S LAW

283

8.1 Introduction 283
 8.2 Three-dimensional Stress 284
 8.3 Three-dimensional Strain 285
 8.4 Generalized Hooke's law 287
 8.5 Plane Stress and Plane Strain 292
 8.5.1 Plane stress 292
 8.5.2 Plane strain 293

8.6 Lames' Coefficient and Relation with Engineering Constants	294
8.7 Thermal Strains	295
9 TRANSFORMATION OF STRESSES AND STRAINS	303
9.1 Introduction	303
9.2 Transformation of Plane Stress	303
9.2.1 Principal Stresses & Maximum Shear Stresses	306
9.3 Transformation of Plane Strain	308
9.3.1 Principal Strains and Maximum Shear Strain	311
9.4 Mohr's Circle for Plane Stress	312
9.5 Mohr's Circle for Plane Strain	323
10 BENDING AND DEFLECTION OF BEAMS	329
10.1 Introduction	329
10.2 Beam and Beam Supports	329
10.3 Shearing Force and Bending Moment	332
10.4 Shear Force and Bending Moment Diagrams	333
10.5 Relationship between Shear Force, Bending Moment & External Loading	348
10.6 Deflection of Beams	359
10.6.1 Location of Neutral Axis	362
10.6.2 Relation for Flexural Stress and Moment-Curvature	363
10.6.3 Relation between Radius of Curvature and Deflection	364
10.7 Boundary Conditions	366
10.8 Moment-Area Method	374
11 TORSION OF CIRCULAR TUBES	395
11.1 Introduction	395
11.2 Torsion of Solid Circular Shaft	396
11.3 Twisting Moment and Shear Stress	397
11.3.1 Polar Moment of Inertia for Hollow Circular	

Cross-section	399
11.4 Shafts with Discrete Torques	402
12 THIN WALLED CYLINDERS AND HELICAL SPRINGS	409
12.1 Introduction	409
12.2 Thin Walled Cylinders	409
12.3 Thin Walled Spheres	413
12.4 Helical Springs	415
12.4.1 Close-coiled Helical Springs	416
13 ELASTIC STRAIN ENERGY: CONCEPT & APPLICATIONS	421
13.1 Introduction	421
13.2 Strain Energy of an Elastic Rod Subjected to Tensile or Compressive Load	422
13.3 Strain Energy for Bending of a Beam	426
13.4 Strain Energy for Torsion	430
13.5 Strain Energy for Transverse Shear	432
13.6 Work and Energy Under Several Loads for Linear Elastic Systems	435
13.7 Castigliano's First Theorem	438
13.8 Castigliano's Second Theorem	438
14 INTRODUCTION TO FLUID MECHANICS	461
14.1 What is a Fluid?	461
14.2 Fluid Mechanics in Engineering	462
15 FLUID PROPERTIES	465
15.1 Introduction	465
15.2 Pressure	466
15.2.1 Pascal Principle	467
15.2.2 Absolute and Gauge Pressures	468
15.3 Vapour Pressure	469

15.4 Viscosity 470	15.4.1 Newton Law of Viscosity 471	15.4.2 Units of Viscosity 472	15.5 Surface Tension 474	15.6 Compressibility 474	15.7 Viscosity and Surface Tension 475
--------------------	------------------------------------	-------------------------------	--------------------------	--------------------------	--

16 PRESSURE IN A STATIC FLUID 479

16.1 Introduction 479	16.2 Variation of Pressure in a Static Fluid 479	16.2.1 Along a Vertical Direction 479	16.2.2 Along a Horizontal Direction 481	16.2.3 The Free Surface of a Liquid 483	16.2.4 Barometer 484	16.2.5 Pressure head 485	16.3 Capillarity 487	16.4 Pressure Measurement 491	16.4.1 Piezometer 491	16.4.2 Manometers 492	16.4.3 Differential Manometers 494	16.4.4 Reservoir Manometer 495	16.4.5 Inclined Tube Manometer 496	16.4.6 Reducing Errors in Manometry 497
-----------------------	--	---------------------------------------	---	---	----------------------	--------------------------	----------------------	-------------------------------	-----------------------	-----------------------	------------------------------------	--------------------------------	------------------------------------	---

17 PRESSURE FORCES ON SUBMERGED SURFACES 501

17.1 Introduction 501	17.2 Pressure Forces on Flat Surfaces 502	17.3 Pressure Forces on Curved Surfaces 503	17.4 Centre of Pressure on a Rectangular Surface 507	17.4.1 Parallel Axis Theorem 508	17.4.2 Centre of Pressure on an Inclined Plate 511	17.5 Buoyancy 517
-----------------------	---	---	--	----------------------------------	--	-------------------

18 FLUIDS IN MOTION 525

18.1 Field Description 525	18.2 Time Rate of Change 526
----------------------------	------------------------------

18.3 Pathlines, Streamlines & Streaklines	527
18.4 Mass Balance	529
18.5 Bernoulli Equation	531
18.6 Engineering Energy Equation	542
19 SOME PRACTICAL APPLICATIONS	551
19.1 Measurement of Flow Rates	551
19.1.1 Venturimeter	551
19.1.2 Orifice Plate Meter	554
19.1.3 Flow Measurement in Open Channels - Weirs	556
19.2 Measurement of Flow Velocity at a Point	557
19.3 Flow through Pipes	559
19.4 Laminar and Turbulent Flows	562
19.5 Pipe Losses in Turbulent Flows	563
20 INTRODUCTION TO THERMODYNAMICS	567
20.1 Thermodynamics	567
20.2 Thermodynamic Systems	568
20.3 Thermodynamic Properties and State of a System	569
20.4 Thermodynamic Equilibrium	570
20.5 Thermodynamic Processes	571
20.5.1 Reversible Process	572
20.5.2 Cyclic Processes or Cycle	573
20.6 The Zeroth Law of Thermodynamics and The Concept of Temperature	574
20.7 Basic Principles of Thermodynamics	575
21 ENERGY AND THE FIRST LAW	569
21.1 Principle of Energy Conservation	569
21.1.1 Energy Content	569
21.1.2 Energy Interactions	570
21.1.3 First Law of Thermodynamics	571
21.1.4 First Law Applied to a Cyclic Process	572
21.1.5 Nature of Work, Heat and Internal Energy	573

21.2 Some Properties of Simple Compressible Substances	576
21.3 Tabular Representation of Equations of State	582
21.4 First Law Analysis of Some Important Thermodynamic Processes	586
21.4.1 Constant Volume Heating	586
21.4.2 Constant Pressure Process	589
21.4.3 Isothermal Process	590
21.4.4 Reversible Adiabatic Process	591
21.5 Applications of First Law to Flow Processes	594

22 SECOND LAW OF THERMODYNAMICS 607

22.1 Introduction	607
22.2 Energy Reservoir	608
22.3 Available Energy and Entropy	608
22.4 Entropy Changes in Some Elementary Processes	610
22.4.1 Entropy Changes in a Work Reservoir	610
22.4.2 Entropy Changes of a Heat Reservoir	610
22.4.3 Entropy Change in Heat Transfer between two Heat Reservoirs	610
22.4.4 Heat Engine	611
22.5 Heat Pump	616

23 SOME ENERGY CONVERSIONS CYCLES 621

23.1 Otto Cycle	621
23.2 Diesel Cycle	626
23.3 Brayton Cycle for Gas Turbines	630

BIBLIOGRAPHY 643

INDEX 645