

Success consists of going from failure to failure without loss of enthusiasm.

Winston Churchill

Table of contents

Table of contents.....	.i
Abstract.....	iii
Resumo.....	v
Keywords.....	vii
Palavras-chave.....	ix
Notation.....	xi
Abbreviations.....	xv
Terminology.....	xvii
1. Introduction	1
1.1. Motivation and objectives	1
1.2. Literature review	2
1.3. Outline of this report	11
2. Basic set-valued elements.....	13
2.1. The linear complementarity problem	13
2.2. The unilateral primitive	14
2.3. The Sgn-mulfuction.....	15
3. Set-valued force laws for frictional unilateral contacts	17
3.1. Set-valued normal contact law	17
3.2. Set-valued tangential contact law	18
4. Generalized contact kinematics	21
4.1. General issues in contact	21
4.2. Kinematic aspects of contact between rigid bodies.....	22
5. Dynamics of non-smooth rigid multibody systems.....	27
5.1. Equations of motion	27
5.2. Impact laws.....	30
6. Moreau time-stepping method	33
6.1. Time discretization based on the Moreau midpoint rule	33
6.2. Computational strategy to solve the equations of motion	34

7. Solving the contact-impact problem as an LCP	37
7.1. Formulation of the contact-impact problem as an LCP.....	37
7.2. Moreau time-stepping method with an LCP formulation.....	40
8. Results and discussion.....	43
8.1. Bouncing ball.....	43
8.2. Woodpecker toy.....	48
8.3. Slider-crank mechanism with a translational clearance joint	56
8.4. Reciprocating cam with flat-face follower.....	67
9. Concluding remarks.....	73
References	75
Appendices	83
Appendix I – The linear complementarity problem	83
Appendix II – Demonstrative example of a differential measure	91
Appendix III – General impact laws for both impact and smooth phases.....	92