

Contents

Preface	xiii
----------------	-------------

Chapter 15 Kinematics of Particles	473
---	------------

15.1 Introduction	473
15.2 General Rectilinear Motion	474
15.3 Graphical Interpretation of Displacement, Velocity, and Acceleration Diagrams for Rectilinear Motion	477
15.4 Rectilinear Motion with Constant Acceleration	484
15.5 Plane Curvilinear Motion—Normal and Tangential Components	490
15.6 Plane Curvilinear Translation—Rectangular Components	495
15.7 Plane Projectile Motion in Terms of Component Motions	499
15.8 Relative Displacement, Velocity, and Acceleration	503
15.9 Summary	509
Problems	511

Chapter 16 Dynamics of Particles	528
---	------------

16.1 Introduction—Newton's Second Law	528
16.2 Units	530
16.3 Dynamics of a Particle in Rectilinear Translation	531
16.4 Dynamics of Connected Particles in Rectilinear Translation	535
16.5 Dynamics of a Particle in Plane Curvilinear Motion—Normal and Tangential Components	538
16.6 The D'Alembert, or Inertia, Force	547
16.7 Summary	549
Problems	551

Chapter 17 Kinematics of Plane Motion of a Rigid Body	562
17.1 Introduction	562
17.2 Rectilinear, and Plane Curvilinear, Translation of a Rigid Body	563
17.3 Rotation of a Rigid Body about a Fixed Axis	565
17.4 Graphical Interpretation of Angular Displacement, Velocity and Acceleration Diagrams	567
17.5 Rotation, with Constant Acceleration, of a Rigid Body about a Fixed Axis	569
17.6 Relation between Translational and Rotational Motion	572
17.7 Relation between Translational and Rotational Motion of Connected Bodies	574
17.8 General Plane Motion of a Rigid Body	576
17.9 Instant Center of Rotation	579
17.10 Pure Rolling of Rigid Bodies	582
17.11 Summary	584
Problems	586
Chapter 18 Centroids, and Mass Moments of Inertia, of Rigid Bodies	597
18.1 Introduction	597
18.2 Centroids of Volumes	599
18.3 Center of Mass of a Rigid Body	603
18.4 Centroid of a Composite Homogeneous Rigid Body	605
18.5 Mass Moment of Inertia of a Homogeneous Rigid Body	608
18.6 Parallel-Axis, or Transfer, Theorem for Mass Moments of Inertia	611
18.7 Radius of Gyration	615
18.8 Mass Moments of Inertia of Homogeneous Thin Plane Rigid Bodies	615
18.9 Relation between Moments of Inertia of a Plane Area and Mass Moments of Inertia of a Homogeneous Thin Plane Rigid Body	618
18.10 Mass Moments of Inertia of Composite Homogeneous Rigid Bodies	621
18.11 Computation of Mass Moments of Inertia Using the Transfer Theorem and a Single Integration	626
18.12 Center of Mass, and Mass Moment of Inertia, of Plane Bodies Formed of Thin Rod Shapes	629
18.13 Summary	632
Problems	640
Chapter 19 Dynamics of Rigid Bodies in Plane Motion	655
19.1 Introduction	655
19.2 Dynamic Motion of a Rigid Body about a Fixed Point	657

19.3	Dynamic Motion Described by Translation of the Center of Mass, and Rotation about This Point	661
19.4	Pure Rolling of a Cylindrical Body	670
19.5	Dynamic Motion of Connected Rigid Bodies	675
19.6	Solutions Using the D'Alembert, or Inertia, Forces and Moments	678
19.7	Criteria for Sliding or Tipping	685
19.8	Center of Percussion	688
19.9	Summary	690
	Problems	691

Chapter 20 Work-Energy Methods for Particles and Rigid Bodies

709

20.1	Introduction	709
20.2	Work of a Force	710
20.3	Work of a Couple, Moment, or Torque	713
20.4	Energy Due to Position—Potential Energy of a Particle	714
20.5	Energy Due to Motion—Kinetic Energy of a Particle	717
20.6	Conservation of Energy—The Work-Energy Method for a Particle	719
20.7	Potential Energy of a Rigid Body in Plane Motion	724
20.8	Kinetic Energy of a Rigid Body in Plane Motion	724
20.9	Conservation of Energy—The Work-Energy Method for a Rigid Body in Plane Motion	726
20.10	The Work-Energy Method for Connected Bodies	729
20.11	The Work-Energy Method Used to Find the Value of the Normal Acceleration of a Particle	731
20.12	Work or Energy per Unit Time—Power	735
20.13	Summary	741
	Problems	743

Chapter 21 Impulse-Momentum Methods for Particles and Rigid Bodies

758

21.1	Introduction	758
21.2	Impulse of a Force and Linear Momentum of a Particle	760
21.3	Impulse of a Constant Force	762
21.4	Impact	763
21.5	Conservation of Linear Momentum	765
21.6	Coefficient of Restitution	767
21.7	Direct and Oblique, Central Impact	774
21.8	Impulsive Forces	777
21.9	Angular Momentum of a Rigid Body in Plane Motion	778
21.10	Impulse-Momentum Equation for Rigid Bodies in Plane Motion	778

21.11 Impact of Rigid Bodies in Plane Motion	780
21.12 Summary	788
Problems	790

**Chapter 22 Dynamics of Rigid Bodies
in Three Dimensional
Motion—Dynamic
Unbalance and Gyroscopic
Moments**

804

22.1 Introduction	804
22.2 Review of the D'Alembert, or Inertia, Force	806
22.3 Dynamic Forces Caused by Rotating Off-Center Point Masses—Solution by Direct Use of Inertia Forces	807
22.4 Dynamic Forces Caused by Rotating Off-Center Slender Bodies—Solution by Integration of the Inertia Forces Acting on the Mass Elements	811
22.5 Mass Product of Inertia of Thin Plane Bodies	815
22.6 Dynamic Forces Caused by Rotating Unbalance— General Solution for Unbalanced Bodies of Arbitrary Shape	819
22.7 Independence of Dynamic Forces and Angular Acceleration of Rotating Unbalanced Bodies	828
22.8 Dynamic Balancing of Rotors	829
22.9 Critical Speed of a Shaft with an Unbalanced Rotor	832
22.10 Derivative of a Vector with Constant Magnitude and Changing Direction	835
22.11 Moment Effects Due to Change in Direction of an Axis of Rotation—The Gyroscopic Moment	836
22.12 Summary	839
Problems	840

**Chapter 23 Mechanical Vibration with
One Degree of Freedom**

851

23.1 Introduction	851
23.2 Natural Frequency of Undamped Free Vibration	851
23.3 Natural Frequency of Undamped Free Vibration of a Rotational System with Small Angular Displacements	859
23.4 Undamped Forced Vibration	861
23.5 Natural Frequency of Free Vibration with Viscous Damping	863
23.6 The Logarithmic Decrement	867
23.7 Forced Vibration with Viscous Damping	868
23.8 Summary	876
Problems	879

Chapter 24 Rectilinear Motion of a Body with Resisting, or Drag, Forces**Contents | xi**

24.1	Introduction	887
24.2	Constant Drag Force	888
24.3	Drag Force directly Proportional to Velocity— Linear Resistance Law	889
24.4	Drag Force Proportional to Velocity Squared— Quadratic Resistance Law	894
24.5	Quadratic Resistance Law—Applied Constant Force with Same Sense as Velocity	898
24.6	Quadratic Resistance Law—Applied Constant Force with Sense Opposite that of Velocity	902
24.7	Summary Problems	907 908
Appendix		913
List of Symbols		914
Index		917
Answers to Odd-Numbered Problems		921