
Contents

Preface	page	xii
Historical perspective		xv
Notation		xvii
1	Introduction to plasticity: experimental facts	1
1.1	Elastic and plastic behaviours	1
1.2	Influence of the strain rate	7
1.3	Other effects	9
1.4	The plastic-hardening threshold: experimental data	11
1.5	Examples of plastic-flow criteria	17
1.6	Conclusions: working hypotheses in elastoplasticity	24
Problems for Chapter 1		25
2	Thermomechanics of elastoviscoplastic continua	30
2.1	The small-perturbation hypothesis	30
2.2	General principles of continuous-media thermomechanics	32
2.2.1	Principle of virtual power (PVP)	32
2.2.2	Principles (laws) of thermodynamics for continuous media	36
2.3	Using the Clausius–Duhem inequality	38
2.4	Particular cases of solid media	40
2.4.1	Neither plastic strain nor associated phenomena	40
2.4.2	Maxwell's viscoelasticity	41
2.4.3	Thermoelasticity	43
2.4.4	The difference between viscous and plastic phenomena	43
Problems for Chapter 2		46
3	Small-strain elastoplasticity	50
3.1	Reminder of the thermomechanical formulation	50
3.1.1	The notion of normal dissipative mechanism	50
3.1.2	Dissipation pseudo-potential	52
3.1.3	Positively homogeneous dissipation functions of degree 1	53
3.2	Perfect plasticity equations in SPH	54

3.3	Incremental nature of the elastoplasticity laws	57
3.4	Remarks	61
3.4.1	Energy aspect	61
3.4.2	Thermodynamic restriction on the convex C	62
3.4.3	Regularity	62
3.4.4	The Prandtl–Reuss relations	62
3.4.5	The Lévy–Mises relations	63
3.4.6	The Hencky–Nadai relations	63
3.5	Viscoplasticity	63
	Problems for Chapter 3	65
4	Problems in perfect elastoplasticity	69
4.1	Reminder of the perfect elastoplasticity equations	69
4.2	Problem in terms of velocities	72
4.2.1	The intuitive viewpoint	72
4.2.2	The Greenberg minimum principle	72
4.2.3	The Hodge–Prager minimum principle	73
4.2.4	Mathematical analysis of quasi-static evolution	77
4.2.5	Evolution in stresses	77
4.2.6	Evolution of plastic strains	80
4.3	Asymptotic behaviour: shakedown	81
4.3.1	Practical motivation	81
4.3.2	The Melan–Koiter Theorem	82
4.4	Remark on discontinuities	85
	Appendix to Chapter 4: minimum principles in elasticity	85
	Problems for Chapter 4	89
5	Elastoplasticity with strain-hardening	94
5.1	Generalized standard media	94
5.1.1	The basic idea	94
5.1.2	Generalization	96
5.1.3	Examples	97
5.2	Relations between velocities; incremental constitutive equations	107
5.3	Stability in Ilyushin's sense	111
5.4	Elastoplastic evolution in the presence of hardening	113
5.5	Simplified abstract formulation	114
	Problems for Chapter 5	116
6	Elements of limit analysis	121
6.1	The notion of limit load	121
6.1.1	Characterization of the limit load	122
6.1.2	Case of the rigid–plastic model	123
6.1.3	Example: spherical envelope under pressure	123

6.2	Computation of the limit load	127
6.2.1	Generalities	127
6.2.2	Static method	129
6.2.3	Kinematic method	130
6.3	Example of a foundation's limit load	130
	Problems for Chapter 6	132
7	Crack propagation and fracture mechanics	136
7.1	Introduction and elementary notions	136
7.2	The notion of singularity	139
7.3	The energy aspect of brittle fracture	144
7.4	The Rice–Eshelby–Cherepanov integral	148
7.5	Global potential, generalized Rice integral, energy-release rate	149
7.6	Quasi-static evolution of a crack system in an elastic solid in brittle fracture	150
7.7	Similarity between plasticity and fracture	153
7.8	The Barenblatt theory	155
7.9	Introduction of a plastic zone	156
	Problems for Chapter 7	158
8	Elastoplasticity with finite strains	162
8.1	Decomposition of elastoplastic strains	162
8.2	Green–Naghdi decomposition	166
8.3	Lee decomposition	167
8.4	Evolution equation (normality rule)	169
	Problems for Chapter 8	171
9	Homogenization of elastoplastic composites	174
9.1	Notion of homogenization	174
9.2	Notion of representative volume element and localization	175
9.2.1	Representative volume element (RVE)	175
9.2.2	Localization process	176
9.2.3	The Hill–Mandel principle of macro-homogeneity	177
9.2.4	Functional notation	178
9.3	The example of pure elasticity	179
9.3.1	The localization problem	179
9.3.2	Case where \mathcal{E} is prescribed	180
9.3.3	Case where Σ is prescribed	181
9.3.4	Equivalence between 'prescribed stress' and 'prescribed strain'	182

9.4	Elastoplastic constituents	183
9.4.1	Macroscopic potentials	183
9.4.2	Stability in the sense of Drucker	185
9.4.3	Macroscopic loading surface, macroscopic 'convex'	186
9.5	Structure of macroscopic constitutive equations	187
9.5.1	State variables	187
9.5.2	Internal energy of the macroscopic material	188
9.5.3	Equations of state	188
9.5.4	Example of an approximate model	189
9.6	First example: composite with unidirectional fibres	191
9.7	Second example: polycrystals	194
9.7.1	The monocrystal	194
9.7.2	The polycrystal	195
9.8	Notion of limit analysis for composites	197
9.8.1	Extremal flow surface	197
9.8.2	Determination of homogenized plastically admissible stresses	198
9.9	Homogenization of cracked materials	199
	Problems for Chapter 9	202
10	Coupling between plasticity and damage	206
10.1	Notion of damage	206
10.2	Thermodynamic formulation in SPH	207
10.3	Elastoplasticity of a damaged body	208
10.3.1	Damage criterion	208
10.3.2	Evolution of damage parameters	210
10.3.3	Plastic microstrains	211
10.3.4	Coupling with plasticity	212
10.4	Example of a complete model with ductile damage	213
	Problems for Chapter 10	214
11	Numerical solution of plasticity problems	219
11.1	Introduction	219
11.2	Elementary notions on numerical computations	220
11.3	Application to elastoplasticity	220
11.3.1	Explicit scheme	220
11.3.2	Implicit scheme	221
11.3.3	Incremental problem for the implicit scheme	223
11.3.4	Example of iterative method (Ilyushin)	223
11.3.5	An elastoplastic thin flat plate with a thermal loading	226
11.4	Application of the finite-element method	228
11.5	Examples of computations by FEM in elastoplasticity	230

11.5.1 Elastoplastic torsion of a cylindrical rod with a multiconnected section	230
11.5.2 Traction of a cracked rectangular plate	233
Problems for Chapter 11	235
12 Experimental study using infrared thermography	245
12.1 Heat equation in a deformable solid	245
12.2 Linearization about a natural reference state	248
12.3 Method of infrared thermography	250
12.4 Temperature distribution in fracture	252
12.4.1 Consequences of thermodynamic laws	252
12.4.2 Singularity of the temperature distribution	256
12.5 Illustrative examples	258
Problems for Chapter 12	258
Appendix 1 Thermodynamics of continuous media	262
A1.1 General notions	262
A1.1.1 Thermodynamic systems	262
A1.1.2 Thermodynamic state variables	263
A1.1.3 Thermodynamic state	263
A1.2 Thermostatics	264
A1.2.1 Axioms of thermostatics	264
A1.2.2 Scaling of temperature, Carnot's Theorem	267
A1.2.3 Thermodynamic potentials	268
A1.2.4 The evolution of real systems	270
A1.3 Thermodynamics	272
A1.3.1 The theory of irreversible processes	272
A1.3.2 The 'rational' theory of Coleman and Noll	276
A1.3.3 Theory with internal variables	276
A1.3.3.1 General properties	276
A1.3.3.2 Local accompanying state	278
A1.3.3.3 Evolution laws for internal variables	280
Appendix 2 Convexity	283
A2.1 Definitions	283
A2.1.1 Convex function	283
A2.1.2 Indicator function of a convex set	283
A2.2 Subdifferentials	285
A2.3 Lower semicontinuity	288
A2.4 Conjugate functions, Legendre–Fenchel transformation	288
A2.5 Minimization of functions	291

Appendix 3 Analytic solutions of some problems in elastoplasticity	293
A3.1 Elastoplastic loading of a wedge	293
A3.1.1 General equations	293
A3.1.2 Elastic law of state	294
A3.1.3 Prandtl–Reuss equations	295
A3.1.4 The full elastic solution	295
A3.1.5 Elastoplastic border	296
A3.1.6 The elastoplastic solution	297
A3.2 Elastoplastic torsion of a circular shaft	299
A3.2.1 Elastic solution	299
A3.2.2 Elastoplastic solution	300
A3.3 Tube subjected to combined torsion and simple traction	302
A3.4 Cyclic torsion of a composite with unidirectional fibres	304
A3.4.1 Basic equations	305
A3.4.2 Torsion of a slice	306
A3.4.3 Material obeying a generalized Tresca criterion	308
A3.5 Problems with hardening	309
Appendix 4 Analytic computation of stress-intensity factors	313
A4.1 Plane problems in isotropic linear elasticity	313
A4.2 Stress-intensity factor at the crack tip	316
A4.3 Remark on numerical computations of stress-intensity factors	321
Further reading	324
Bibliography	326
Index	341