

Contents

<i>Preface</i>	x
<i>Glossary of symbols and abbreviations</i>	xiii
1 The Griffith concept	1
1.1 Stress concentrators	2
1.2 Griffith energy-balance concept: equilibrium fracture	5
1.3 Crack in uniform tension	7
1.4 Obreimoff's experiment	9
1.5 Molecular theory of strength	12
1.6 Griffith flaws	13
1.7 Further considerations	14
2 Continuum aspects of crack propagation I: linear elastic crack-tip field	16
2.1 Continuum approach to crack equilibrium: crack system as thermodynamic cycle	17
2.2 Mechanical-energy-release rate, G	20
2.3 Crack-tip field and stress-intensity factor, K	23
2.4 Equivalence of G and K parameters	29
2.5 G and K for specific crack systems	30
2.6 Condition for equilibrium fracture: incorporation of the Griffith concept	39
2.7 Crack stability and additivity of K -fields	41
2.8 Crack paths	44
3 Continuum aspects of crack propagation II: nonlinear crack-tip field	51
3.1 Nonlinearity and irreversibility of crack-tip processes	52
3.2 Irwin-Orowan extension of the Griffith concept	56
3.3 Barenblatt cohesion-zone model	59

3.4	Path-independent integrals about crack tip	66
3.5	Equivalence of energy-balance and cohesion-zone approaches	70
3.6	Crack-tip shielding: the <i>R</i> -curve or <i>T</i> -curve	72
3.7	Specific shielding configurations: bridged interfaces and frontal zones	80
4	Unstable crack propagation: dynamic fracture	86
4.1	Mott extension of the Griffith concept	87
4.2	Running crack in tensile specimen	88
4.3	Dynamical effects near terminal velocity	93
4.4	Dynamical loading	99
4.5	Fracto-emission	103
5	Chemical processes in crack propagation: kinetic fracture	106
5.1	Orowan generalisation of the Griffith equilibrium concept: work of adhesion	108
5.2	Rice generalisation of the Griffith concept	112
5.3	Crack-tip chemistry and shielding	117
5.4	Crack velocity data	119
5.5	Models of kinetic crack propagation	128
5.6	Evaluation of crack velocity parameters	138
5.7	Thresholds and hysteresis in crack healing-repropagation	139
6	Atomic aspects of fracture	143
6.1	Cohesive strength model	144
6.2	Lattice models and crack trapping: intrinsic bond rupture	149
6.3	Computer-simulation models	162
6.4	Chemistry: concentrated crack-tip reactions	165
6.5	Chemistry: surface forces and metastable crack-interface states	175
6.6	Crack-tip plasticity	185
6.7	Fundamental atomic sharpness of brittle cracks: direct observations by transmission electron microscopy	188
7	Microstructure and toughness	194
7.1	Geometrical crack-front perturbations	195
7.2	Toughening by crack-tip shielding: general considerations	208
7.3	Frontal-zone shielding: dislocation and microcrack clouds	211

7.4	Frontal-zone shielding: phase transformations in zirconia	221
7.5	Shielding by crack-interface bridging: monophase ceramics	230
7.6	Ceramic composites	242
8	Indentation fracture <i>→ toughness, heat</i>	249
8.1	Crack propagation in contact fields: blunt and sharp indenters	250
8.2	Indentation cracks as controlled flaws: inert strength, toughness, and T -curves	263
8.3	Indentation cracks as controlled flaws: time-dependent strength and fatigue	276
8.4	Subthreshold indentations: crack initiation	282
8.5	Subthreshold indentations: strength	293
8.6	Special applications of the indentation method	296
8.7	Contact damage: strength degradation, erosion and wear	300
8.8	Surface forces and contact adhesion	304
9	Crack initiation: flaws	307
9.1	Crack nucleation at microcontacts	309
9.2	Crack nucleation at dislocation pile-ups	314
9.3	Flaws from chemical, thermal, and radiant fields	319
9.4	Processing flaws in ceramics	325
9.5	Stability of flaws: size effects in crack initiation	328
9.6	Stability of flaws: effect of grain size on strength	332
10	Strength and reliability	335
10.1	Strength and flaw statistics	337
10.2	Flaw statistics and lifetime	343
10.3	Flaw elimination	347
10.4	Flaw tolerance	350
10.5	Other design factors	357
References and reading list		363
Index		372