

1	Introduction	1
1.1	Terminology	1
1.2	Sustainability and Climate Change	4
1.3	Decarbonization	4
1.4	Climate Change	5
1.5	Energy Ethics	10
1.6	Hydrogen Economy: Pros and Cons	11
1.6.1	Incentives for Transition to Hydrogen	11
1.6.2	Existing Limitations	12
2	Energy Resources	15
2.1	Nonrenewable Energy Sources	15
2.1.1	Advantages and Disadvantages	15
2.1.2	Coal	16
2.1.3	Petroleum	17
2.1.4	Natural Gas	19
2.1.4.1	Advantages and Disadvantages	19
2.2	Renewable Energy	22
2.2.1	Solar Energy	24
2.2.1.1	Solar Energy Benefits	25
2.2.1.2	Solar Energy Disadvantages	25
2.2.1.3	Solar Cells	26
2.2.2	Wind Energy	26
2.2.2.1	Advantages of Wind Power	28
2.2.2.2	Disadvantages of Wind Power	28
2.2.3	Hydroelectric Power	28
2.2.3.1	Advantages of Hydroelectricity	29
2.2.3.2	Disadvantages of Hydroelectricity	29

2.2.4	Biomass Energy	30
2.2.5	Biomass Energy from Landfills and Biofuels	32
2.2.5.1	Benefits of Biofuels	33
2.2.5.2	Disadvantages of Biofuels	33
2.2.5.3	Summary of Hay as a Biofuel	33
2.2.6	Geothermal Energy: Harnessing the Earth's Heat	34
2.2.6.1	Types of Geothermal Resources	34
2.2.6.2	Natural Hydrothermal Features	35
2.2.6.3	Advantages of Geothermal Energy	35
2.2.6.4	Challenges of Geothermal Energy	36
2.2.7	Geothermal Heating: Tapping into Earth's Stable Temperatures	36
2.2.7.1	How Geothermal Heating Works	36
2.2.7.2	Components of Geothermal Heat Pump Systems	36
2.2.7.3	Efficiency Comparison	36
2.2.7.4	Advantages of Geothermal Heating	37
2.2.7.5	Challenges	37
2.2.8	Ocean Energy: Harnessing the Power of Tides	37
2.2.8.1	Tidal Energy Mechanisms	38
2.2.8.2	Environmental Impact and Global Presence	38
2.2.8.3	Global Renewable Energy Trends	39
2.3	Nuclear Energy: An Alternative Power Source	39
2.3.1	Advantages and Disadvantages of Nuclear Power	40
2.3.1.1	Advantages of Nuclear Power	40
2.3.1.2	Disadvantages of Nuclear Power	40
2.3.2	Nuclear Fission and Uranium Enrichment	41
2.3.3	Fusion: The Future of Nuclear Energy	42

3 Hydrogen Properties 47

3.1	General Characteristics and Physical Properties of Hydrogen	47
3.1.1	Chemical Properties of Hydrogen	50
3.1.2	Chemical Reactions of Hydrogen	51
3.1.3	Health Effects of Hydrogen	52
3.1.4	Hydrogen Isotopes	53
3.2	Hydrogen Bonding	54
3.3	Occurrence of Hydrogen	54
3.4	Comparing Hydrogen to Other Fuels	55

4 Fuel Cells: Essential Information 59

4.1	Overview	59
4.2	FC Technologies: Classification and Comparison	60
4.2.1	Polymer Electrolyte Membrane Fuel Cells	60
4.2.1.1	PEMFC Fabrication Hardware	63

4.2.1.2	Membrane Electrode Assembly	63
4.2.1.3	The Polymer Electrolyte Membrane (PEM)	64
4.2.1.4	The Electrodes	64
4.2.1.5	Bipolar Plates	64
4.2.1.6	The PEMFC Stack	65
4.2.1.7	Electrode Poisoning	66
4.2.1.8	FC Reformers	66
4.2.2	Alkaline Fuel Cell (AFC)	67
4.2.3	Electrodes in AFCs	68
4.2.4	Molten Carbonate Fuel Cell (MCFC)	69
4.2.5	Electrodes in MCFCs	71
4.2.6	Phosphoric Acid Fuel Cell (PAFC)	71
4.2.7	Solid Oxide Fuel Cell (SOFC)	72
4.2.8	Electrodes in SOFCs	74
4.2.9	Direct Methanol Fuel Cell	75
4.3	FC Architecture	76
4.3.1	FCPS Subsystems	76
4.3.2	Balance of Plant	78
4.3.3	Membraneless FC	79
5	Hydrogen Technology Essentials	81
5.1	Hydrogen Safety	81
5.1.1	Liquid Hydrogen Safety	83
5.1.2	Flammability	83
5.1.2.1	Containers	84
5.1.2.2	Tanks	84
5.1.3	Transferring Liquid Hydrogen	84
5.1.3.1	Shipment	85
5.1.4	Safety Considerations	85
5.1.5	Hydrogen-Ammonia Blend Safety	86
5.1.6	Codes and Standards for Safety	88
5.1.7	Hydrogen Sensors	88
5.1.8	Hydrogen Safety-Related Properties	89
5.2	Energy Storage Technologies	89
5.2.1	Chemical Storage	90
5.2.1.1	Flow Batteries	90
5.2.1.2	Powerpaste	90
5.2.1.3	Power to Gas	91
5.2.1.4	Power to Liquid	92
5.2.1.5	Pumped-hydro Storage	92
5.2.1.6	Underground Hydrogen Storage	93
5.2.1.7	Aluminum as an Energy Source	94
5.2.1.8	Home Energy Storage	95

5.2.1.9	Grid Electricity and Power Stations	95
5.2.1.10	Vehicle-to-Grid Storage	95
5.2.1.11	Economics of Energy Storage	95
5.3	Hydrogen Storage for Transportation	96
5.3.1	Storage of Hydrogen as a Compressed Gas	98
5.3.2	Storage of Hydrogen as a Liquid	100
5.3.3	Solid Hydrogen Storage: Chemical Methods	102
5.3.4	Reversible Metal Hydride–Hydrogen Storage	102
5.3.4.1	Metal Hydride–Hydrogen Storage	104
5.3.5	Alkali Metal Hydrides	105
5.3.6	Carbon Nanostructures	105
5.3.7	Other Technologies	106
5.4	Hydrogen Infrastructure	107
5.5	Hydrogen Transportation via Pipeline	108
5.6	Ammonia as an Energy Carrier	111
5.6.1	Compressed Hydrogen	113
5.6.2	Liquid Hydrogen	113
5.7	Blending Hydrogen in Natural Gas Pipelines	115
5.7.1	Methanol Transportation as a Comparison	115
5.7.2	Petroleum Transportation as a Comparison	116
5.7.3	Realistic Approaches for Hydrogen Transportation	116
5.8	Hydrogen Bonding	118
5.9	Hydrogen Extraction from Blended Mixtures	119
5.9.1	Pressure Swing Adsorption (PSA) Technology	119
5.9.2	Membrane Separation Technology	120
5.9.3	Electrochemical Hydrogen Separation (EHS)	120
5.9.4	Cost Analysis of Hydrogen Extraction	120

6	Hydrogen Production: Current Practices and Emerging Technologies	123
6.1	Hydrogen Production from Fossil Sources	123
6.1.1	Steam Methane Reforming (SMR)	123
6.1.1.1	Chemical Equation and Purpose	124
6.1.1.2	Process Description	124
6.1.2	Methane Pyrolysis	125
6.1.2.1	Process Overview	125
6.1.2.2	Temperature and Variations	125
6.1.2.3	Chemical Reaction and Environmental Impact	125
6.1.3	Coal Gasification	126
6.1.3.1	Water–Gas Shift Reaction	126
6.1.3.2	Hydrogen Purification	126

6.1.3.3	Commercial Coal Gasification Processes	126
6.1.3.4	Comparison with Steam Reforming of Natural Gas	126
6.1.4	Partial Oxidation of Hydrocarbons	127
6.1.4.1	Fundamentals of the Process	127
6.1.4.2	Enhancing Hydrogen Content	127
6.1.4.3	Application in Heavy Hydrocarbons	127
6.1.5	Petroleum-Refining Operations	128
6.1.5.1	Hydrogen Recovery in Refining Processes	128
6.1.5.2	Environmental Impact of Conventional Hydrogen Production	128
6.1.5.3	Ongoing Research and Development Efforts	128
6.2	Hydrogen Production from Renewable Sources	129
6.2.1	Green Hydrogen Production	129
6.2.1.1	Electrolysis and Its Applications	129
6.2.1.2	Challenges and Potential of Green Hydrogen	129
6.2.1.3	Environmental Impact	130
6.2.2	Blue Hydrogen Production	130
6.2.3	Pink Hydrogen	130
6.2.3.1	The Future of Nuclear-Generated Hydrogen	131
6.2.4	Gray Hydrogen	132
6.2.4.1	Overview of Gray Hydrogen	132
6.2.4.2	Costs and Environmental Implications	132
6.2.5	Turquoise Hydrogen	132
6.2.5.1	Innovative Production of Turquoise Hydrogen	132
6.2.6	Yellow Hydrogen	132
6.2.6.1	Thermal Solar Production of Yellow Hydrogen	132
6.3	Current Industrial Hydrogen Production	133
6.3.1	Global Production and Market Value	133
6.3.2	Industrial Methods of Hydrogen Production	133
6.3.3	Electrolysis of Water	133
6.3.3.1	Historical Development and Fundamentals	133
6.3.3.2	Electrolysis Techniques in Hydrogen Production	134
6.3.3.3	Electrolysis Reactions	134
6.3.3.4	High-Pressure Electrolysis	134
6.3.3.5	High-Temperature Electrolysis	135
6.3.3.6	The Evolution of Electrolysis Technology	135
6.3.4	Water Splitting Using Solar Energy	135
6.3.4.1	Thermochemical Cycles for Water Splitting	135
6.3.4.2	Photoelectrochemical Water Splitting	136
6.3.4.3	Photocatalyst Development by Panasonic Corp.	136
6.3.4.4	Wind Energy and Hydrogen Production	136
6.3.5	Biomass Gasification with Bacteria	137

6.3.6	Hydrogen as a By-product of Other Chemical Processes	138
6.3.6.1	Ammonia Dissociation	138
6.3.6.2	Hydrogen in Industrial Production	139
6.3.7	Municipal Solid Waste (MSW) Utilization for Hydrogen Production	139
6.3.7.1	Composition and Utilization of LFG	140
6.3.7.2	Potential for Hydrogen Production	140
6.4	Traditional Hydrogen Production Methods	140
6.4.1	Renewable Energy Sources in Hydrogen Production	142
6.5	Conclusion	142

7 Hydrogen Applications 143

7.1	Current Industrial Applications	143
7.1.1	Ammonia Synthesis	143
7.1.2	Food and Beverage Industry	144
7.1.3	Electronics Manufacturing	144
7.1.4	Pharmaceutical Industry	145
7.1.5	Glass, Cement, and Lime Production	145
7.1.6	Polymers	145
7.1.7	Metal Industry	146
7.1.8	Metallic Ore Reduction	146
7.1.9	Oil and Gas	146
7.1.10	Methanol Production	146
7.1.11	Automotive and Transportation	147
7.1.12	Space-Aviation	147
7.1.13	Hydrogen in Welding, Cutting, and Coating	147
7.1.14	Weather Balloons	148
7.1.15	Hydrogen as a Coolant	148
7.1.16	Searching Gas	149
7.1.17	Chemical Analysis	149
7.1.18	Isotope Applications	149
7.1.19	Burning Hydrogen for Electricity Generation	149
7.2	FC-Specific Applications	151
7.2.1	Stationary Power Production	151
7.2.2	FC Transportation	152
7.2.3	Well-to-Wheel Analysis	153
7.2.4	Practical Transportation Applications	154
7.2.5	Other Transport Applications	154
7.2.6	Micropower Systems	157
7.2.7	Mobile and Residential Power Systems	158
7.2.8	FCs for Space and Military Applications	159

7.2.9	Maritime Applications	161
7.2.10	Wearable Technology and Internet of Things (IoT)	161
7.2.11	Unmanned Underwater Vehicles (UUVs)	161
7.2.12	Emergency and Disaster Relief	162
7.3	Electric Batteries	162
7.3.1	History	162
7.3.2	Primary Batteries	165
7.3.3	Batteries for Portable Devices	165
7.3.4	Secondary Batteries	166
7.3.5	Traction Battery	168
7.3.6	Rechargeable Batteries	169
7.3.7	Lead-Acid Batteries	170
7.3.8	Lithium-ion Batteries	171
7.3.9	NiMH and High-Temperature Batteries	173
7.3.10	Molten Salt Battery	174
7.3.11	Recharging	175
7.3.11.1	Charging Infrastructure	175
7.3.11.2	EV Range and Battery Evolution	176
7.3.12	Battery Specifications	176
7.3.12.1	Environmental Impact and Recycling	176
7.4	Hydrogen Transportation	177
7.4.1	FC Reformers	177
7.4.2	Steam Reformer	178
7.4.3	Fuel Processor	179
7.4.4	FCS Architecture	180
7.4.5	Power Conditioning and Controls	181
7.4.6	Balance of Plant	181
7.4.7	FCPS Subsystems	181
7.4.8	FCPS Functions and Features	183
7.4.9	FCPS Performance Characteristics	183
7.4.10	Fuel Choice	184
7.5	The Human Mobility in the 21st Century	186
7.5.1	Electric Transportation	186
7.5.2	Hybrid Electric Vehicles	188
7.5.3	Plug-in Hybrid Electric Vehicles	189
7.5.4	All-Electric Vehicles	189
7.5.5	Comparison with ICEs	190
7.5.6	Fuel Cells vs. Electric Batteries	190
7.5.7	Social Influence of Autonomous Cars	191
7.5.8	Employment and AVs	192
7.5.9	Urban Future in the Era of AVs	193

- 7.5.9.1 Key Transformations Induced by AVs 193
- 7.5.9.2 Social and Economic Implications 194
- 7.5.9.3 Transportation Efficiency 194
- 7.5.10 Financial Implications of AVs 194
- 7.5.11 Self-Driving Functionality and Levels of Autonomy 195
- 7.5.12 Safety Considerations in AV Technology 196
- 7.5.13 Cloud Network Database Establishment for AVs 196
- 7.5.14 The Rise of AVs 197
- 7.6 Conclusion 197

Used Literature 199

Index 211