

Contents

Preface	xix
Guided Tour	xxiii
What Resources Support This Textbook?	xxv
Acknowledgments	xxvii
Connect	xxviii
List of Symbols	xxx

11 Kinematics of Particles 600

11.1	Introduction to Dynamics 602
Rectilinear Motion of Particles 603	
11.2	Position, Velocity, and Acceleration 603
11.3	Determination of the Motion of a Particle 607
11.4	Uniform Rectilinear Motion 618
11.5	Uniformly Accelerated Rectilinear Motion 618
11.6	Motion of Several Particles 619
*11.7	Graphical Solution of Rectilinear-Motion Problems 632
*11.8	Other Graphical Methods 633
Curvilinear Motion of Particles 643	
11.9	Position Vector, Velocity, and Acceleration 643
11.10	Derivatives of Vector Functions 645
11.11	Rectangular Components of Velocity and Acceleration 647
11.12	Motion Relative to a Frame in Translation 648
11.13	Tangential and Normal Components 667
11.14	Radial and Transverse Components 670
Review and Summary for Chapter 11 685	
Review Problems 689	
Computer Problems 692	

12 Kinetics of Particles: Newton's Second Law 694

- 12.1** Introduction 696
 - 12.2** Newton's Second Law of Motion 697
 - 12.3** Linear Momentum of a Particle. Rate of Change of Linear Momentum 698
 - 12.4** Systems of Units 699
 - 12.5** Equations of Motion 701
 - 12.6** Dynamic Equilibrium 703
 - 12.7** Angular Momentum of a Particle. Rate of Change of Angular Momentum 727
 - 12.8** Equations of Motion in Terms of Radial and Transverse Components 728
 - 12.9** Motion Under a Central Force. Conservation of Angular Momentum 729
 - 12.10** Newton's Law of Gravitation 730
 - *12.11** Trajectory of a Particle Under a Central Force 741
 - *12.12** Application to Space Mechanics 742
 - *12.13** Kepler's Laws of Planetary Motion 745
- Review and Summary for Chapter 12 754
- Review Problems 758
- Computer Problems 761

13 Kinetics of Particles: Energy and Momentum Methods 762

- 13.1** Introduction 764
- 13.2** Work of a Force 764
- 13.3** Kinetic Energy of a Particle. Principle of Work and Energy 768
- 13.4** Applications of the Principle of Work and Energy 770
- 13.5** Power and Efficiency 771
- 13.6** Potential Energy 789
- *13.7** Conservative Forces 791

- 13.8** Conservation of Energy 792
- 13.9** Motion Under a Conservative Central Force.
Application to Space Mechanics 793
- 13.10** Principle of Impulse and Momentum 814
- 13.11** Impulsive Motion 817
- 13.12** Impact 831
- 13.13** Direct Central Impact 831
- 13.14** Oblique Central Impact 834
- 13.15** Problems Involving Energy and Momentum 837

Review and Summary for Chapter 13 854

Review Problems 860

Computer Problems 864

14 Systems of Particles 866

- 14.1** Introduction 868
- 14.2** Application of Newton's Laws to the Motion of a System of Particles. Effective Forces 868
- 14.3** Linear and Angular Momentum of a System of Particles 871
- 14.4** Motion of the Mass Center of a System of Particles 872
- 14.5** Angular Momentum of a System of Particles About Its Mass Center 874
- 14.6** Conservation of Momentum for a System of Particles 876
- 14.7** Kinetic Energy of a System of Particles 886
- 14.8** Work-Energy Principle. Conservation of Energy for a System of Particles 887
- 14.9** Principle of Impulse and Momentum for a System of Particles 887
- *14.10** Variable Systems of Particles 897
- *14.11** Steady Stream of Particles 898
- *14.12** Systems Gaining or Losing Mass 900

Review and Summary for Chapter 14 917

Review Problems 921

Computer Problems 924

15 Kinematics of Rigid Bodies 926

- 15.1** Introduction 928
15.2 Translation 930
15.3 Rotation About a Fixed Axis 931
15.4 Equations Defining the Rotation of a Rigid Body About a Fixed Axis 934
15.5 General Plane Motion 944
15.6 Absolute and Relative Velocity in Plane Motion 946
15.7 Instantaneous Center of Rotation in Plane Motion 958
15.8 Absolute and Relative Acceleration in Plane Motion 970
***15.9** Analysis of Plane Motion in Terms of a Parameter 972
15.10 Rate of Change of a Vector with Respect to a Rotating Frame 985
15.11 Plane Motion of a Particle Relative to a Rotating Frame. Coriolis Acceleration 987
***15.12** Motion About a Fixed Point 998
***15.13** General Motion 1001
***15.14** Three-Dimensional Motion of a Particle Relative to a Rotating Frame. Coriolis Acceleration 1013
***15.15** Frame of Reference in General Motion 1014
- Review and Summary for Chapter 15 1026
Review Problems 1033
Computer Problems 1037

16 Plane Motion of Rigid Bodies: Forces and Accelerations 1040

- 16.1** Introduction 1042
16.2 Equations of Motion for a Rigid Body 1043
16.3 Angular Momentum of a Rigid Body in Plane Motion 1044
16.4 Plane Motion of a Rigid Body. D'Alembert's Principle 1045

*16.5	A Remark on the Axioms of the Mechanics of Rigid Bodies	1046
16.6	Solution of Problems Involving the Motion of a Rigid Body	1047
16.7	Systems of Rigid Bodies	1048
16.8	Constrained Plane Motion	1072

Review and Summary for Chapter 16 1097

Review Problems 1099

Computer Problems 1103

17 Plane Motion of Rigid Bodies: Energy and Momentum Methods 1104

17.1	Introduction	1106
17.2	Principle of Work and Energy for a Rigid Body	1106
17.3	Work of Forces Acting on a Rigid Body	1107
17.4	Kinetic Energy of a Rigid Body in Plane Motion	1108
17.5	Systems of Rigid Bodies	1109
17.6	Conservation of Energy	1110
17.7	Power	1111
17.8	Principle of Impulse and Momentum for the Plane Motion of a Rigid Body	1129
17.9	Systems of Rigid Bodies	1132
17.10	Conservation of Angular Momentum	1132
17.11	Impulsive Motion	1147
17.12	Eccentric Impact	1147

Review and Summary for Chapter 17 1163

Review Problems 1167

Computer Problems 1170

18 Kinetics of Rigid Bodies in Three Dimensions 1172

- ***18.1** Introduction 1174
 - ***18.2** Angular Momentum of a Rigid Body in Three Dimensions 1175
 - ***18.3** Application of the Principle of Impulse and Momentum to the Three-Dimensional Motion of a Rigid Body 1179
 - ***18.4** Kinetic Energy of a Rigid Body in Three Dimensions 1180
 - ***18.5** Motion of a Rigid Body in Three Dimensions 1193
 - ***18.6** Euler's Equations of Motion. Extension of D'Alembert's Principle to the Motion of a Rigid Body in Three Dimensions 1194
 - ***18.7** Motion of a Rigid Body About a Fixed Point 1195
 - ***18.8** Rotation of a Rigid Body About a Fixed Axis 1196
 - ***18.9** Motion of a Gyroscope. Eulerian Angles 1212
 - ***18.10** Steady Precession of a Gyroscope 1214
 - ***18.11** Motion of an Axisymmetrical Body Under No Force 1215
- Review and Summary for Chapter 18 1229
Review Problems 1234
Computer Problems 1238

19 Mechanical Vibrations 1240

19.1	Introduction	1242
Vibrations Without Damping 1242		
19.2	Free Vibrations of Particles. Simple Harmonic Motion	1242
19.3	Simple Pendulum (Approximate Solution)	1246
*19.4	Simple Pendulum (Exact Solution)	1247
19.5	Free Vibrations of Rigid Bodies	1256
19.6	Application of the Principle of Conservation of Energy	1268
19.7	Forced Vibrations	1278
Damped Vibrations 1290		
*19.8	Damped Free Vibrations	1290
*19.9	Damped Forced Vibrations	1293
*19.10	Electrical Analogues	1294
Review and Summary for Chapter 19 1305		
Review Problems 1310		
Computer Problems 1314		

Appendix A	Some Useful Definitions and Properties of Vector Algebra	A1
Appendix B	Moments of Inertia of Masses	A7
Appendix C	Fundamentals of Engineering Examination	A45
Photo Credits C1		
Index I1		
Answers to Problems AN1		