

Contents

Foreword by Jan Mycielski	<i>page</i>	xi
Preface		xiii
Preface to the Paperback Edition		xvii
Part I Paradoxical Decompositions, or the Nonexistence of Finitely Additive Measures		1
Chapter 1	Introduction	3
Historical background of paradoxical decompositions and a formal definition. The central example: free non-Abelian groups. Connections with non-Lebesgue measurable sets. A paradoxical subset of the plane. Paradoxical actions of free groups. The possibility of free groups being the only paradoxical ones.		
Chapter 2	The Hausdorff Paradox	15
A free non-Abelian group of rotations of a sphere. The nonexistence of certain finitely additive measures in \mathbf{R}^n , $n \geq 3$.		

Chapter 3	The Banach-Tarski Paradox: Duplicating Spheres and Balls	21
	Congruence by dissection and the Bolyai-Gerwien Theorem on polygons of equal area.	
	Equidecomposability: a set-theoretic form of dissection. A generalization of the Schröder-Bernstein Theorem, and an application to dissections of polygons.	
	Absorbing a countable subset of a sphere by a rotation. The Banach-Tarski Paradox: duplicating spheres and balls with rotations and translations. Strong form of the paradox: the equidecomposability of arbitrary bounded sets with nonempty interiors in \mathbf{R}^3 . Some open questions derived from the Banach-Tarski Paradox.	
Chapter 4	Locally Commutative Actions: Minimizing the Number of Pieces in a Paradoxical Decomposition	34
	Free non-Abelian groups are paradoxical using four pieces. Locally commutative actions of free groups. A sphere is paradoxical using four and not fewer pieces, a ball using five and not fewer pieces. Four-piece paradoxical decompositions imply the existence of free subgroups. Arbitrary systems of congruences.	
	Divisibility of a sphere into rotationally congruent pieces. Allowing the antipodal map allows more systems of congruences to be solved.	
Chapter 5	Higher Dimensions and Non-Euclidean Spaces	52
	Free subgroups of higher dimensional rotation groups, and the type of paradoxes they cause. Free groups of isometries of \mathbf{R}^n , $n \geq 3$, acting without fixed points. Paradoxes in non-Euclidean spaces; a constructive paradoxical decomposition of the hyperbolic plane. A result on tetrahedral snakes.	
Chapter 6	Free Groups of Large Rank: Getting a Continuum of Spheres from One	73
	Solving large systems of congruences using free groups of large rank. Using a continuum of algebraically independent numbers to construct large free groups of spherical, Euclidean and non-Euclidean isometries. An alternate approach using analytic functions. The transfinite duplication of a sphere. The anomaly of the hyperbolic plane. The case of hyperbolic 3-space. Free	

semigroups of large rank, and the planar decompositions they cause. Sets in metric and Euclidean spaces congruent to proper subsets. The analogous problem in groups.		
Chapter 7	Paradoxes in Low Dimensions	96
A free non-Abelian group of linear transformations of determinant 1 in \mathbb{R}^2 . A paradox in the plane using affine, area-preserving transformations. Tarski's Circle-Squaring Problem. Restricting the problem to pieces made by cutting on Jordan curves. Allowing similarity transformations that magnify only a little. A paradox on the line using linear fractional transformations.		
Chapter 8	The Semigroup of Equidecomposability Types	109
How to add equidecomposability tapes. An application to locally commutative actions. A cancellation law in the type semigroup. An application to spheres. The role of the Axiom of Choice in the cancellation law. Equidecomposability with some natural restrictions on the pieces.		
Part II	Finitely Additive Measures, or the Nonexistence of Paradoxical Decompositions	123
Chapter 9	Transition	125
Tarski's Theorem equating the nonexistence of paradoxes with the existence of finitely additive invariant measures. A choiceless version of Tychonoff's Theorem. Measures on the algebra of sets with the Property of Baire; equivalent formulations of Marczewski's Problem. Uniqueness of Jordan and Lebesgue measure. Equidecomposability using countably many pieces, with and without restrictions on the pieces.		
Chapter 10	Measures in Groups	146
Amenable groups and left-invariant means. All elementary groups are amenable. A characterization of amenable matrix groups. Constructing measures invariant with respect to an amenable group. The absence of paradoxes in \mathbb{R}^1 and \mathbb{R}^2 . Properties of groups that are equivalent to amenability.		

Chapter 11	Applications of Amenability: Marczewski Measures and Exotic Measures	165
	The existence of invariant measures that vanish on meager sets. Invariant measures that treat similarities properly. The existence of exotic measures in \mathbf{R}^1 and \mathbf{R}^2 . The use of Property T to disprove the existence of exotic measures in higher dimensions. Exotic measures and paradoxical decompositions modulo an ideal.	
	Paradoxes in \mathbf{R}^n using measurable sets. Characterizing the Euclidean isometry groups with respect to which invariant measures exist.	
Chapter 12	Growth Conditions in Groups and Supramenability	188
	Supramenable groups and free subsemigroups. Growth conditions in groups: slow growth implies supramenability. The nonexistence of a paradoxical subset of the real line. Polynomial growth and the Milnor-Wolf Conjecture. A characterization of the groups of isometries with respect to which a paradoxical subset of \mathbf{R}^n exists. Two-piece paradoxical decompositions and free subsemigroups.	
Chapter 13	The Role of the Axiom of Choice	207
	Consistency results in measure theory: The Banach-Tarski Paradox is not a theorem of ZF. Neither are some basic results about amenable groups. Eliminating the Axiom of Choice from geometrical results. Foundational implications of the Banach-Tarski Paradox.	
Appendix A	Euclidean Transformation Groups	222
Appendix B	Jordan Measure	227
Appendix C	Unsolved Problems	229
Addendum to Second Printing		234
References		246
List of Symbols		248
Index		250