
CONTENTS

PREFACE TO THE FOURTH EDITION / xv

PREFACE TO THE FIRST EDITION / xxi

PART I STRUCTURES MODELED AS A SINGLE-DEGREE-OF-FREEDOM SYSTEM 1

1 UNDAMPED SINGLE-DEGREE-OF-FREEDOM SYSTEM 3

- 1.1 Degrees of Freedom / 3
- 1.2 Undamped System / 5
- 1.3 Springs in Parallel or in Series / 6
- 1.4 Newton's Law of Motion / 8
- 1.5 Free Body Diagram / 9
- 1.6 D'Alembert's Principle / 10
- 1.7 Solution of the Differential Equation of Motion / 11
- 1.8 Frequency and Period / 13
- 1.9 Amplitude of Motion / 15
- 1.10 Undamped Single-Degree-of-Freedom Systems Using COSMOS / 20
- 1.11 Summary / 22
- Problems / 23

2 DAMPED SINGLE-DEGREE-OF-FREEDOM SYSTEM 31

- 2.1 Viscous Damping / 31
- 2.2 Equation of Motion / 32
- 2.3 Critically Damped System / 33
- 2.4 Overdamped System / 34
- 2.5 Underdamped System / 35
- 2.6 Logarithmic Decrement / 37
- 2.7 Summary / 43
- Problems / 44

3 RESPONSE OF ONE-DEGREE-OF-FREEDOM SYSTEM TO HARMONIC LOADING 47

- 3.1 Undamped System: Harmonic Excitation / 47
- 3.2 Damped System: Harmonic Excitation / 50
- 3.3 Evaluation of Damping at Resonance / 58
- 3.4 Bandwidth Method (Half-Power) to Evaluate Damping / 59
- 3.5 Energy Dissipated by Viscous Damping / 61
- 3.6 Equivalent Viscous Damping / 63
- 3.7 Response to Support Motion / 66
- 3.8 Force Transmitted to the Foundation / 76
- 3.9 Seismic Instruments / 79
- 3.10 Response of One-Degree-of-Freedom System to Harmonic Loading Using COSMOS / 81
- 3.11 Summary / 88
- Problems / 92

4 RESPONSE TO GENERAL DYNAMIC LOADING 96

- 4.1 Impulsive Loading and Duhamel's Integral / 96
- 4.2 Numerical Evaluation of Duhamel's Integral—Undamped System / 105
- 4.3 Numerical Evaluation of Duhamel's Integral—Damped System / 109
- 4.4 Response by Direct Integration / 110
- 4.5 Program 2—Response by Direct Integration / 116
- 4.6 Program 3—Response to Impulsive Excitation / 119
- 4.7 Response to General Dynamic Loading Using COSMOS / 124
- 4.8 Summary / 131
- Problems / 132

5	FOURIER ANALYSIS AND RESPONSE IN THE FREQUENCY DOMAIN	139
5.1	Fourier Analysis	139
5.2	Response to a Loading Represented by Fourier Series	140
5.3	Fourier Coefficients for Piecewise Linear Functions	143
5.4	Exponential Form of Fourier Series	144
5.5	Discrete Fourier Analysis	145
5.6	Fast Fourier Transform	148
5.7	Program 4—Response in the Frequency Domain	150
5.8	Summary	156
	Problems	156
6	GENERALIZED COORDINATES AND RAYLEIGH'S METHOD	162
6.1	Principle of Virtual Work	162
6.2	Generalized Single-Degree-of-Freedom System—Rigid Body	164
6.3	Generalized Single-Degree-of-Freedom System—Distributed Elasticity	167
6.4	Shear Forces and Bending Moments	172
6.5	Generalized Equation of Motion for a Multistory Building	177
6.6	Shape Function	180
6.7	Rayleigh's Method	185
6.8	Improved Rayleigh's Method	192
6.9	Shear Walls	195
6.10	Summary	199
	Problems	200
7	NONLINEAR STRUCTURAL RESPONSE	205
7.1	Nonlinear Single Degree-of-Freedom Model	206
7.2	Integration of the Nonlinear Equation of Motion	208
7.3	Constant Acceleration Method	208
7.4	Linear Acceleration Step-by-Step Method	211
7.5	The Newmark Beta Method	214
7.6	Elastoplastic Behavior	215
7.7	Algorithm for the Step-by-Step Solution for Elastoplastic Single-Degree-of-Freedom System	217
7.8	Program 5—Response for Elastoplastic Behavioar System	221
7.9	Nonlinear Structural Response Using COSMOS	224
7.10	Summary	228
	Problems	229

8 RESPONSE SPECTRA 233

- 8.1 Construction of Response Spectrum / 233
- 8.2 Response Spectrum for Support Excitation / 237
- 8.3 Tripartite Response Spectra / 238
- 8.4 Response Spectra for Elastic Design / 241
- 8.5 Influence of Local Soil Conditions / 245
- 8.6 Response Spectra for Inelastic Systems / 247
- 8.7 Response Spectra for Inelastic Design / 250
- 8.8 Program 6—Seismic Response Spectra / 257
- 8.9 Response Spectra Using COSMOS / 260
- 8.10 Summary / 265
- Problems / 266

PART II STRUCTURES MODELED AS SHEAR BUILDINGS 271

9 THE MULTISTORY SHEAR BUILDING 271

- 9.1 Stiffness Equations for the Shear Building / 272
- 9.2 $P-\Delta$ Effect on a Plane Shear Building / 275
- 9.3 Flexibility Equations for the Shear Building / 278
- 9.4 Relationship Between Stiffness and Flexibility Matrices / 280
- 9.5 Program 7—Modeling Structures as Shear Buildings / 281
- 9.6 Summary / 283
- Problems / 283

10 FREE VIBRATION OF A SHEAR BUILDING 287

- 10.1 Natural Frequencies and Normal Modes / 287
- 10.2 Orthogonality Property of the Normal Modes / 294
- 10.3 Rayleigh's Quotient / 298
- 10.4 Program 8—Natural Frequencies and Normal Modes / 300
- 10.5 Free Vibration of a Shear Building Using COSMOS / 301
- 10.6 Summary / 304
- Problems / 305

11 FORCED MOTION OF SHEAR BUILDING 310

- 11.1 Modal Superposition Method / 310
- 11.2 Response of a Shear Building to Base Motion / 317
- 11.3 Program 9—Response by Modal Superposition / 324

11.4	Harmonic Forced Excitation / 326
11.5	Program 10—Harmonic Response / 331
11.6	Combining Maximum Values of Modal Response / 334
11.7	Forced Motion of a Shear Building Using COSMOS / 335
11.8	Summary / 346
	Problems / 348
12	DAMPED MOTION OF SHEAR BUILDINGS 352
12.1	Equations for Damped Shear Building / 353
12.2	Uncoupled Damped Equations / 354
12.3	Conditions for Damping Uncoupling / 355
12.4	Program 11—Absolute Damping From Damping Ratios / 362
12.5	Summary / 364
	Problems / 364
13	REDUCTION OF DYNAMIC MATRICES 366
13.1	Static Condensation / 367
13.2	Static Condensation Applied to Dynamic Problems / 370
13.3	Dynamic Condensation / 380
13.4	Modified Dynamic Condensation / 387
13.5	Program 12—Reduction of the Dynamic Problem / 391
13.6	Summary / 393
	Problems / 393
PART III STRUCTURES MODELED AS DISCRETE MULTIDEGREE-OF-FREEDOM SYSTEMS 397	
14	DYNAMIC ANALYSIS OF BEAMS 399
14.1	Static Properties for a Beam Segment / 400
14.2	System Stiffness Matrix / 405
14.3	Inertial Properties—Lumped Mass / 408
14.4	Inertial Properties—Consistent Mass / 410
14.5	Damping Properties / 414
14.6	External Loads / 414
14.7	Geometric Stiffness / 416
14.8	Equations of Motion / 420
14.9	Element Forces at Nodal Coordinates / 427
14.10	Program 13—Modeling Structures as Beams / 430
14.11	Dynamic Analysis of Beams Using COSMOS / 433

14.12	Summary / 437
	Problems / 438
15	DYNAMIC ANALYSIS OF PLANE FRAMES 442
15.1	Element Stiffness Matrix for Axial Effects / 443
15.2	Element Mass Matrix for Axial Effects / 444
15.3	Coordinate Transformation / 449
15.4	Program 14—Modeling Structures as Plane Frames / 458
15.5	Dynamic Analysis of Frames Using COSMOS / 460
15.6	Summary / 465
	Problems / 466
16	DYNAMIC ANALYSIS OF GRIDS 469
16.1	Local and Global Coordinate Systems / 470
16.2	Torsional Effects / 471
16.3	Stiffness Matrix for a Grid Element / 472
16.4	Consistent Mass Matrix for a Grid Element / 473
16.5	Lumped Mass Matrix for a Grid Element / 473
16.6	Transformation of Coordinates / 474
16.7	Program 15—Modeling Structures as Grid Frames / 480
16.8	Dynamic Analysis of Grids Using COSMOS / 483
16.9	Summary / 487
	Problems / 488
17	THREE-DIMENSIONAL FRAMES 491
17.1	Element Stiffness Matrix / 491
17.2	Element Mass Matrix / 493
17.3	Element Damping Matrix / 494
17.4	Transformation of Coordinates / 494
17.5	Differential Equation of Motion / 503
17.6	Dynamic Response / 504
17.7	Program 16—Modeling Structures as Space Frames / 504
17.8	Dynamic Response of Three-Dimensional Frames Using COSMOS / 507
17.9	Summary / 510
	Problems / 510
18	DYNAMIC ANALYSIS OF TRUSSES 511
18.1	Stiffness and Mass Matrices for the Plane Truss / 512
18.2	Transformation of Coordinates / 514

18.3	Program 17—Modeling Structures as Plane Trusses / 520
18.4	Stiffness and Mass Matrices for Space Trusses / 522
18.5	Equation of Motion for Space Trusses / 525
18.6	Program 18—Modeling Structures as Space Trusses / 526
18.7	Dynamic Analysis of Trusses Using COSMOS / 528
18.8	Summary / 536
	Problems / 536
19	DYNAMIC ANALYSIS OF STRUCTURES USING THE FINITE ELEMENT METHOD 538
19.1	Plane Elasticity Problems / 539
19.1.1	Triangular Plate Element for Plane Elasticity Problems / 540
19.1.2	Library of Plane Elasticity Elements (2D Elements) / 552
19.2	Plate Bending / 555
19.2.1	Rectangular Finite Element for Plate Bending / 556
19.2.2	COSMOS Library of Plate and Shell Elements / 565
19.3	Summary / 573
	Problems / 575
20	TIME HISTORY RESPONSE OF MULTIDEGREE-OF-FREEDOM SYSTEMS 577
20.1	Incremental Equations of Motion / 578
20.2	The Wilson- θ Method / 579
20.3	Algorithm for Step-by-Step Solution of a Linear System Using the Wilson- θ Method / 582
20.3.1	Initialization / 582
20.3.2	For Each Time Step / 582
20.4	Program 19—Response by Step Integration / 587
20.5	Newmark Beta Method / 588
20.6	Elastoplastic Behavior of Framed Structures / 589
20.7	Member Stiffness Matrix / 590
20.8	Member Mass Matrix / 593
20.9	Rotation of Plastic Hinges / 595
20.10	Calculation of Member Ductility Ratio / 596
20.11	Time-History Response of Multidegree-of-Freedom Systems Using COSMOS / 597
20.12	Summary / 602
	Problems / 604

PART IV STRUCTURES MODELED WITH DISTRIBUTED PROPERTIES 607**21 DYNAMIC ANALYSIS OF SYSTEMS WITH DISTRIBUTED PROPERTIES 609**

- 21.1 Flexural Vibration of Uniform Beams / 610
- 21.2 Solution of the Equation of Motion in Free Vibration / 611
- 21.3 Natural Frequencies and Mode Shapes for Uniform Beams / 613
 - 21.3.1 Both Ends Simply Supported / 613
 - 21.3.2 Both Ends Free (Free Beam) / 617
 - 21.3.3 Both Ends Fixed / 618
 - 21.3.4 One End Fixed and the other End Free (Cantilever Beam) / 620
 - 21.3.5 One End Fixed and the other End Simply Supported / 622
- 21.4 Orthogonality Condition Between Normal Modes / 622
- 21.5 Forced Vibration of Beams / 624
- 21.6 Dynamic Stresses in Beams / 630
- 21.7 Summary / 632
Problems / 633

22 DISCRETIZATION OF CONTINUOUS SYSTEMS 635

- 22.1 Dynamic Matrix for Flexural Effects / 636
- 22.2 Dynamic Matrix for Axial Effects / 638
- 22.3 Dynamic Matrix for Torsional Effects / 641
- 22.4 Beam Flexure Including Axial-Force Effect / 642
- 22.5 Power Series Expansion of the Dynamic Matrix for Flexural Effects / 646
- 22.6 Power Series Expansion of the Dynamic Matrix for Axial and for Torsional Effects / 648
- 22.7 Power Series Expansion of the Dynamic Matrix Including the Effect of Axial Forces / 649
- 22.8 Summary / 650

PART V RANDOM VIBRATION 651**23 RANDOM VIBRATION 653**

- 23.1 Statistical Description of Random Functions / 654
- 23.2 Probability Density Function / 657
- 23.3 The Normal Distribution / 659
- 23.4 The Rayleigh Distribution / 660

23.5	Correlation / 662
23.6	The Fourier Transform / 666
23.7	Spectral Analysis / 668
23.8	Spectral Density Function / 672
23.9	Narrow-Band and Wide-Band Random Processes / 675
23.10	Response to Random Excitation: Single-Degree-of-Freedom System / 679
23.11	Response to Random Excitation: Multiple-Degree-of-Freedom System / 685
23.12	Random Vibration Using COSMOS / 696
23.13	Summary / 700

PART VI EARTHQUAKE ENGINEERING 705

24 UNIFORM BUILDING CODE 1994: EQUIVALENT STATIC LATERAL FORCE METHOD 707

24.1	Earthquake Ground Motion / 708
24.2	Equivalent Seismic Lateral Force / 712
24.3	Earthquake-Resistant Design Methods / 712
24.4	Static Lateral Force Method / 713
24.5	Distribution of Lateral Forces / 718
24.6	Story Shear Force / 718
24.7	Horizontal Torsional Moment / 719
24.8	Overspinning Moment / 720
24.9	Story Drift Limitation / 720
24.10	P-Delta Effect (P- Δ) / 721
24.11	Diaphragm Design Force / 723
24.12	Program 23 UBC-94 Equivalent Static Lateral Force Method / 732
24.13	Simplified Three Dimensional Earthquake Resistant Design of Buildings / 739
24.13.1	Modeling the Building / 739
24.13.2	Transformation of Stiffness Coefficients / 740
24.13.3	Center of Rigidity / 742
24.13.4	Story Eccentricity / 743
24.13.5	Rotational Stiffness / 744
24.13.6	Fundamental Period / 745
24.13.7	Seismic Factors / 745
24.13.8	Base Shear Force / 746
24.13.9	Equivalent Lateral Seismic Forces / 746
24.13.10	Overspinning Moments / 747

24.13.10	Story Shear Force / 747
24.13.12	Torsional Moments / 747
24.13.13	Story Drift and Lateral Displacements / 748
24.13.14	Forces and Moments on Structural Elements / 749
24.13.15	Computer Program / 750
24.14	Equivalent Static Lateral Force Method Using COSMOS / 756
24.15	Summary / 761
25	UNIFORM BUILDING CODE 1994: DYNAMIC METHOD 766
25.1	Modal Seismic Response of Buildings / 766
25.1.1	Modal Equation and Participation Factor / 767
25.1.2	Modal Shear Force / 768
25.1.3	Effective Modal Weight / 770
25.1.4	Modal Lateral Forces / 771
25.1.5	Modal Displacements / 771
25.1.6	Modal Drift / 772
25.1.7	Modal Overturning Moment / 772
25.1.8	Modal Torsional Moment / 772
25.2	Total Design Values / 773
25.3	Provisions of UBC-94: Dynamic Method / 774
25.4	Scaling of Results / 776
25.5	Program 24-UBC 1994 Dynamic Lateral Force Method / 783
25.6	Summary / 787
	Problems / 788
	APPENDICES / 789
	Appendix I: Answers to Problems in Part I / 791
	Appendix II: Computer Programs / 801
	Appendix III: Organization and their Acronyms / 804
	Glossary / 807
	Selected Bibliography / 815
	Index / 819
	Diskette Order Form / 825