

Contents

<i>Preface to the Second Edition</i>	<i>iii</i>
<i>Preface to the First Edition</i>	<i>v</i>
1. Introduction	1
1.1 What Is Design for Manufacture and Assembly?	1
1.2 How Does DFMA Work?	8
1.3 Reasons for Not Implementing DFMA	16
1.4 What Are the Advantages of Applying DFMA During Product Design?	21
1.5 Typical DFMA Case Studies	22
1.6 Overall Impact of DFMA on U.S. Industry	34
1.7 Conclusions	39
References	40
2. Selection of Materials and Processes	43
2.1 Introduction	43
2.2 General Requirements for Early Materials and Process Selection	45
2.3 Selection of Manufacturing Processes	46
2.4 Process Capabilities	48
2.5 Selection of Materials	55
2.6 Primary Process/Material Selection	65
2.7 Systematic Selection of Processes and Materials	71
References	83

3. Product Design for Manual Assembly	85
3.1 Introduction	85
3.2 General Design Guidelines for Manual Assembly	86
3.3 Development of the Systematic DFA Methodology	93
3.4 Assembly Efficiency	93
3.5 Classification Systems	96
3.6 Effect of Part Symmetry on Handling Time	96
3.7 Effect of Part Thickness and Size on Handling Time	101
3.8 Effect of Weight on Handling Time	103
3.9 Parts Requiring Two Hands for Manipulation	104
3.10 Effects of Combinations of Factors	104
3.11 Effect of Symmetry for Parts that Severely Nest or Tangle and May Require Tweezers for Grasping and Manipulation	104
3.12 Effect of Chamfer Design on Insertion Operations	105
3.13 Estimation of Insertion Time	108
3.14 Avoiding Jams During Assembly	109
3.15 Reducing Disc-Assembly Problems	111
3.16 Effects of Obstructed Access and Restricted Vision on Insertion of Threaded Fasteners of Various Designs	112
3.17 Effects of Obstructed Access and Restricted Vision on Pop-Riveting Operations	115
3.18 Effects of Holding Down	115
3.19 Manual Assembly Database and Design Data Sheets	118
3.20 Application of the DFA Methodology	119
3.21 Further Design Guidelines	125
3.22 Large Assemblies	128
3.23 Types of Manual Assembly Methods	130
3.24 Effect of Assembly Layout on Acquisition Times	133
3.25 Assembly Quality	137
3.26 Applying Learning Curves to the DFA Times	141
References	143
4. Electrical Connections and Wire Harness Assembly	147
4.1 Introduction	147
4.2 Wire or Cable Harness Assembly	149
4.3 Types of Electrical Connections	152
4.4 Types of Wires and Cables	159
4.5 Preparation and Assembly Times	160
4.6 Analysis Method	182
References	190

5.	Design for High-Speed Automatic Assembly and Robot Assembly	191
5.1	Introduction	191
5.2	Design of Parts for High-Speed Feeding and Orienting	192
5.3	Example	196
5.4	Additional Feeding Difficulties	199
5.5	High-Speed Automatic Insertion	199
5.6	Example	201
5.7	Analysis of an Assembly	202
5.8	General Rules for Product Design for Automation	203
5.9	Design of Parts for Feeding and Orienting	208
5.10	Summary of Design Rules for High-Speed Automatic Assembly	210
5.11	Product Design for Robot Assembly	211
	References	217
6.	Printed Circuit Board Design for Manufacture and Assembly	219
6.1	Introduction	219
6.2	Design Sequence for Printed Circuit Boards	220
6.3	Types of Printed Circuit Boards	220
6.4	Terminology	222
6.5	Assembly of Printed Circuit Boards	223
6.6	Estimation of PCB Assembly Costs	238
6.7	Case Studies in PCB Assembly	244
6.8	PCB Manufacturability	249
6.9	Design Considerations	252
6.10	Glossary of Terms	263
	References	266
7.	Design for Machining	267
7.1	Introduction	267
7.2	Machining Using Single-Point Cutting Tools	267
7.3	Machining Using Multipoint Tools	275
7.4	Machining Using Abrasive Wheels	284
7.5	Standardization	290
7.6	Choice of Work Material	291
7.7	Shape of Work Material	293
7.8	Machining Basic Component Shapes	294
7.9	Assembly of Components	307
7.10	Accuracy and Surface Finish	308
7.11	Summary of Design Guidelines	311
7.12	Cost Estimating for Machined Components	313
	References	337

8.	Design for Injection Molding	339
8.1	Introduction	339
8.2	Injection Molding Materials	340
8.3	The Molding Cycle	342
8.4	Injection Molding Systems	344
8.5	Injection Molds	346
8.6	Molding Machine Size	351
8.7	Molding Cycle Time	353
8.8	Mold Cost Estimation	359
8.9	Mold Cost Point System	367
8.10	Estimation of the Optimum Number of Cavities	369
8.11	Design Example	372
8.12	Insert Molding	374
8.13	Design Guidelines	375
8.14	Assembly Techniques	376
	References	379
9.	Design for Sheet Metalworking	381
9.1	Introduction	381
9.2	Dedicated Dies and Pressworking	383
9.3	Press Selection	403
9.4	Turret Pressworking	409
9.5	Press Brake Operations	413
9.6	Design Rules	416
	References	422
10.	Design for Die Casting	423
10.1	Introduction	423
10.2	Die Casting Alloys	423
10.3	The Die Casting Cycle	425
10.4	Die Casting Machines	426
10.5	Die Casting Dies	429
10.6	Finishing	430
10.7	Auxiliary Equipment for Automation	432
10.8	Determination of the Optimum Number of Cavities	433
10.9	Determination of Appropriate Machine Size	439
10.10	Die Casting Cycle Time Estimation	443
10.11	Die Cost Estimation	453
10.12	Assembly Techniques	457
10.13	Design Principles	458
	References	459

11. Design for Powder Metal Processing	461
11.1 Introduction	461
11.2 Main Stages in the Powder Metallurgy Process	463
11.3 Secondary Manufacturing Stages	464
11.4 Compaction Characteristics of Powders	468
11.5 Tooling for Powder Compaction	475
11.6 Presses for Powder Compaction	478
11.7 Form of Powder Metal Parts	481
11.8 Sintering Equipment Characteristics	484
11.9 Materials for Powder Metal Processing	489
11.10 Contributions to Basic Powder Metallurgy Manufacturing Costs	492
11.11 Modifications for Infiltrated Materials	511
11.12 Impregnation, Heat Treatment, Tumbling, Steam Treatment, and Other Surface Treatments	512
11.13 Some Design Guidelines for Powder Metal Parts	514
References	515
12. Design for Sand Casting	517
12.1 Introduction	517
12.2 Sand Casting Alloys	519
12.3 Basic Characteristics and Mold Preparation	519
12.4 Sand Cores	524
12.5 Melting and Pouring of Metal	525
12.6 Cleaning of Castings	526
12.7 Cost Estimating	527
12.8 Design Rules for Sand Castings	537
12.9 Example Calculations	542
References	546
13. Design for Investment Casting	549
13.1 Introduction	549
13.2 Process Overview	549
13.3 Pattern Materials	552
13.4 Pattern Injection Machines	552
13.5 Pattern Molds	554
13.6 Pattern and Cluster Assembly	554
13.7 The Ceramic Shell-Mold	555
13.8 Ceramic Cores	556
13.9 Pattern Meltout	556
13.10 Pattern Burnout and Mold Firing	557
13.11 Knockout and Cleaning	557

13.12	Cutoff and Finishing	557
13.13	Pattern and Core Material Cost	557
13.14	Wax Pattern Injection Cost	561
13.15	Fill Time	562
13.16	Cooling Time	562
13.17	Ejection and Reset Time	564
13.18	Process Cost per Pattern or Core	566
13.19	Estimating Core Injection Cost	567
13.20	Pattern and Core Mold Cost	567
13.21	Core Mold Cost	572
13.22	Pattern and Cluster Assembly Cost	572
13.23	Number of Parts per Cluster	574
13.24	Pattern Piece Cost	575
13.25	Cleaning and Etching	576
13.26	Shell Mold Material Cost	576
13.27	Investing the Pattern Cluster	577
13.28	Pattern Meltdown	578
13.29	Burnout, Sinter, and Preheat	578
13.30	Total Shell Mold Cost	579
13.31	Cost to Melt Metal	579
13.32	Raw Base Metal Cost	583
13.33	Ready-to-Pour Liquid Metal Cost	584
13.34	Pouring Cost	584
13.35	Final Material Cost	584
13.36	Breakout	586
13.37	Cleaning	587
13.38	Cutoff	587
13.39	Design Guidelines	590
	References	591
14.	Design for Hot Forging	593
14.1	Introduction	593
14.2	Characteristics of the Forging Process	593
14.3	The Role of Flash in Forging	595
14.4	Forging Allowances	600
14.5	Preforming During Forging	603
14.6	Flash Removal	609
14.7	Classification of Forgings	610
14.8	Forging Equipment	613
14.9	Classification of Materials	622
14.10	Forging Costs	622
14.11	Forging Die Costs	631

Contents	xiii
14.12 Die Life and Tool Replacement Costs	636
14.13 Costs of Flash Removal	637
14.14 Other Forging Costs	640
References	641
15. Design for Manufacture and Computer-Aided Design	643
15.1 Introduction	643
15.2 General Considerations for Linking CAD and DFMA Analysis	643
15.3 Geometric Representation Schemes in CAD Systems	645
15.4 Design Process in a Linked CAD/DFMA Environment	660
15.5 Extraction of DFMA Data from CAD System Database	663
15.6 Expert Design and Cost Estimating Procedures	665
References	668
<i>Nomenclature</i>	669
<i>Index</i>	683