

CONTENTS

CHAPTER 2	SIMPLE COMPARATIVE EXPERIMENTS	1
SECTION 2.2	BASIC STATISTICAL CONCEPTS	2
SECTION 2.4.1	HYPOTHESIS TESTING	3
EXAMPLE 2.1	HYPOTHESIS TESTING	6
EXAMPLE 2.2	HYPOTHESIS TESTING	8
SECTION 2.5.1	THE PAIRED COMPARISON PROBLEM	8
SECTION 2.5.2	ADVANTAGES OF THE PAIRED COMPARISON DESIGN	9
EXAMPLE 2.3	TWO VARIANCES TEST	9
CHAPTER 3	EXPERIMENTS WITH A SINGLE FACTOR: THE ANALYSIS OF VARIANCE	12
SECTION 3.1	AN EXAMPLE	13
EXAMPLE 3.1	THE PLASMA ETCHING EXPERIMENT	14
SECTION 3.4	MODEL ADEQUACY CHECKING	16
EXAMPLE 3.3	TREATMENT EFFECTS AND CONFIDENCE INTERVALS	17
EXAMPLE 3.4	TEST FOR EQUAL VARIANCES	17
EXAMPLE 3.5	ANALYSIS OF VARIANCE	17
EXAMPLE 3.7	TUKEY MULTIPLE COMPARISONS	20
EXAMPLE 3.8	FISHER MULTIPLE COMPARISON	20
EXAMPLE 3.9	DUNNETT'S MULTIPLE COMPARISON	21
EXAMPLE 3.10	POWER ANALYSIS	22
SECTION 3.8.1	SINGLE FACTOR EXPERIMENT	16
SECTION 3.8.2	APPLICATION OF A DESIGN EXPERIMENT	16

SECTION 3.8.3	DISPERSION EFFECTS	16
EXAMPLE 3.11	THE RANDOM EFFECTS MODEL	16
EXAMPLE 3.12	NONPARAMETRIC ANALYSIS	28
CHAPTER 4	RANDOMIZED BLOCKS, LATIN SQUARES, AND RELATED DESIGNS	29
EXAMPLE 4.1	A RANDOMIZED COMPLETE BLOCK DESIGN	30
EXAMPLE 4.3	LATIN SQUARE DESIGN	33
EXAMPLE 4.4	GRAECO-LATIN SQUARE DESIGN	33
EXAMPLE 4.5	A BALANCED INCOMPLETE BLOCK DESIGN	34
CHAPTER 5	INTRODUCTION TO FACTORIAL DESIGNS	36
EXAMPLE 5.1	THE BATTERY DESIGN EXPERIMENT	37
EXAMPLE 5.2	A TWO-FACTOR EXPERIMENT WITH A SINGLE REPLICATE	39
EXAMPLE 5.3	THE SOFT DRINK BOTTLING PROBLEM	40
EXAMPLE 5.4	THE BATTERY DESIGN EXPERIMENT WITH COVARIATE	41
EXAMPLE 5.5	A 3^2 FACTORIAL EXPERIMENT WITH TWO REPLICATES	42
EXAMPLE 5.6	A FACTORIAL DESIGN WITH BLOCKING	43
CHAPTER 6	THE 2^K FACTORIAL DESIGN	44
SECTION 6.2	THE 2^2 DESIGN	45
EXAMPLE 6.1	THE 2^3 DESIGN	48
EXAMPLE 6.2	A SINGLE REPLICATE OF THE 2^4 DESIGN	49
EXAMPLE 6.3	DATA TRANSFORMATION IN A FACTORIAL DESIGN	53
EXAMPLE 6.5	DUPLICATE MEASUREMENTS ON THE RESPONSE	54
EXAMPLE 6.6	CREDIT CARD MARKETING	57
EXAMPLE 6.7	A 2^K DESIGN WITH CENTER POINTS	59
CHAPTER 7	BLOCKING AND CONFOUNDING IN THE 2^K FACTORIAL DESIGN	61
EXAMPLE 7.1	A 2^K REPLICATED FACTORIAL DESIGN WITH BLOCKING	62

EXAMPLE 7.2	BLOCKING AND CONFOUNDING IN AN UNREPLICATED DESIGN	62
EXAMPLE 7.3	A 2^3 DESIGN WITH PARTIAL CONFOUNDING	63
CHAPTER 8	TWO-LEVEL FRACTIONAL FACTORIAL DESIGNS	65
EXAMPLE 8.1	A HALF-FRACTION OF THE 2^4 DESIGN	66
EXAMPLE 8.2	A 2^{5-1} DESIGN USED FOR PROCESS IMPROVEMENT	67
EXAMPLE 8.3	A 2^{4-1} DESIGN WITH THE ALTERNATE FRACTION	70
EXAMPLE 8.4	THE ONE-QUARTER FRACTION OF THE 2^k DESIGN	71
EXAMPLE 8.5	A SEVEN-FACTOR DESIGN	73
EXAMPLE 8.6	A 2^{8-3} DESIGN IN FOUR BLOCKS	74
EXAMPLE 8.7	A FOLD-OVER 2^{7-4} RESOLUTION III DESIGN	76
EXAMPLE 8.8	THE PLACKETT-BURMAN DESIGN	77
SECTION 8.7.2	SEQUENTIAL EXPERIMENTATION WITH RESOLUTION IV DESIGNS	78
CHAPTER 9	THREE-LEVEL AND MIXED-LEVEL FACTORIAL AND FRACTIONAL FACTORIAL DESIGNS	81
EXAMPLE 9.1	THE 3^3 DESIGN	81
EXAMPLE 9.2	THE 3^3 DESIGN CONFOUNDED IN THREE BLOCKS	83
EXAMPLE 9.3	THE SPIN COATING EXPERIMENT	84
CHAPTER 10	FITTING REGRESSION MODELS	86
EXAMPLE 10.1	MULTIPLE LINEAR REGRESSION MODEL	86
EXAMPLE 10.2	REGRESSION ANALYSIS OF A 2^3 FACTORIAL DESIGN	88
EXAMPLE 10.3	A 2^3 FACTORIAL DESIGN WITH A MISSING OBSERVATION	89
EXAMPLE 10.4	INACCURATE LEVELS IN DESIGN FACTORS	90
EXAMPLE 10.6	TESTS ON INDIVIDUAL REGRESSION COEFFICIENTS	90
EXAMPLE 10.7	CONFIDENCE INTERVALS ON INDIVIDUAL REGRESSION COEFFICIENTS	91
CHAPTER 11	RESPONSE SURFACE METHODS AND DESIGNS	92
EXAMPLE 11.1	THE PATH OF STEEPEST ASCENT	93

EXAMPLE 11.2 CENTRAL COMPOSITE DESIGN	95
SECTION 11.3.4 MULTIPLE RESPONSES	98
EXAMPLE 11.5 A THREE-COMPONENT MIXTURE	101
EXAMPLE 11.6 PAINT FORMULATION	103
EXAMPLE 11.7 EVOLUTIONARY OPERATION (EVOP)	105
CHAPTER 12 ROBUST PARAMETER DESIGN AND PROCESS ROBUSTNESS STUDIES	106
EXAMPLE 12.1 TWO CONTROLLABLE VARIABLES AND ONE NOISE VARIABLE	107
EXAMPLE 12.2 TWO CONTROLLABLE VARIABLES AND THREE NOISE VARIABLES	108
CHAPTER 13 EXPERIMENTS WITH RANDOM FACTORS	111
EXAMPLE 13.1 A MEASUREMENT SYSTEMS CAPABILITY STUDY	111
EXAMPLE 13.2 THE MEASUREMENT SYSTEMS CAPABILITY EXPERIMENT REVISITED	113
EXAMPLE 13.3 THE UNRESTRICTED MODEL	114
EXAMPLE 13.5 A THREE-FACTOR FACTORIAL EXPERIMENT WITH RANDOM FACTORS	115
EXAMPLE 13.6 APPROXIMATE F TESTS	116
CHAPTER 14 NESTED AND SPLIT-PLOT DESIGNS	119
EXAMPLE 14.1 THE TWO-STAGE NESTED DESIGN	120
EXAMPLE 14.2 A NESTED-FACTORIAL DESIGN	121
SECTION 14.4 THE SPLIT-PLOT DESIGN	122
EXAMPLE 14.3 A 2^{5-1} SPLIT-PLOT EXPERIMENT	123
CHAPTER 15 OTHER DESIGN AND ANALYSIS TOPICS	126
EXAMPLE 15.1 BOX-COX TRANSFORMATION	127
EXAMPLE 15.2 THE GENERALIZED LINEAR MODEL AND LOGISTIC REGRESSION	127
EXAMPLE 15.4 TRANSFORMATION OF THE RESPONSE	128
SECTION 15.2 UNBALANCED DATA IN A FACTORIAL DESIGN	128
EXAMPLE 15.5 ANALYSIS OF COVARIANCE	129

