

CONTENTS

PREFACE XI

ABOUT THE AUTHOR XIII

CHAPTER 1 Research Strategies and the Control of Nuisance Variables 1

- 1.1 Introduction 1
- 1.2 Formulation of Plans for the Collection and Analysis of Data 2
- 1.3 Research Strategies 6
- 1.4 Other Research Strategies 9
- 1.5 Threats to Valid Inference Making 16
- 1.6 Other Threats to Valid Inference Making 19
- 1.7 Controlling Nuisance Variables and Minimizing Threats to Valid Inference Making 21
- 1.8 Ethical Treatment of Subjects 24
- 1.9 Review Exercises 26

CHAPTER 2 Experimental Designs: An Overview 30

- 2.1 Introduction 30
- 2.2 Overview of Some Basic Experimental Designs 30
- 2.3 Classification of Analysis of Variance Designs 45
- 2.4 Selecting an Appropriate Design 48
- 2.5 Review of Statistical Inference 49
- 2.6 Review Exercises 70

CHAPTER 3 Fundamental Assumptions in Analysis of Variance 77

- 3.1 Sampling Distributions in Analysis of Variance 77
- 3.2 Partition of the Total Sum of Squares 86
- 3.3 Expectation of the Mean Squares 92
- 3.4 The F Statistic in Analysis of Variance 95

3.5	Effects of Failure to Meet Assumptions in Analysis of Variance	96
3.6	Transformations	103
3.7	Other Procedures for Dealing With Nonnormality, Unequal Variances, and Outliers	108
3.8	Supplement for Section 3.3	111
3.9	Review Exercises	117

CHAPTER 4 Completely Randomized Design 125

4.1	Description of the Design	125
4.2	Exploratory Data Analysis	127
4.3	Computational Example for CR-4 Design	131
4.4	Measures of Strength of Association and Effect Size	134
4.5	Power and the Determination of Sample Size	138
4.6	Random-Effects Model	145
4.7	Advantages and Disadvantages of CR- <i>p</i> Design	146
4.8	Review Exercises	146

CHAPTER 5 Multiple Comparison Tests 154

5.1	Introduction to Multiple Comparison Tests	154
5.2	Procedures for Testing $p - 1$ a Priori Orthogonal Contrasts	170
5.3	Procedures for Testing $p - 1$ Contrasts Involving a Control Group Mean	176
5.4	Procedures for Testing C a Priori Nonorthogonal Contrasts	179
5.5	Procedures for Testing All Pairwise Contrasts	187
5.6	Testing All Contrasts Suggested by an Inspection of the Data	198
5.7	Other Multiple Comparison Procedures	200
5.8	Comparison of Multiple Comparison Procedures	201
5.9	Review Exercises	201

CHAPTER 6 Trend Analysis 209

6.1	Introduction to Tests for Trends	209
6.2	Test for the Linear Trend Contrast	211
6.3	Tests for Higher-Order Trend Contrasts	218
6.4	Linear and Curvilinear Correlation	225
6.5	Variance Accounted for by Mean Contrasts	225
6.6	Review Exercises	227

CHAPTER 7 General Linear Model Approach to ANOVA 233

7.1	Comparison of Analysis of Variance and Multiple Regression	233
7.2	Operations With Vectors and Matrices	234
7.3	General Linear Model	244

7.4	Estimating the Parameters in a Regression Model	247
7.5	Regression Model Approach to ANOVA	253
7.6	Alternative Conception of the Test of $\beta_1 = \beta_2 = \dots = \beta_{h-1} = 0$	262
7.7	Cell Means Model Approach to ANOVA	266
7.8	Summary	272
7.9	Review Exercises	272

CHAPTER 8 Randomized Block Designs 280

8.1	Description of Randomized Block Design	280
8.2	Computational Example for RB- <i>p</i> Design	288
8.3	Alternative Models for RB- <i>p</i> Design	296
8.4	Some Assumptions Underlying RB- <i>p</i> Design	303
8.5	Procedures for Testing Differences Among Means	314
8.6	Tests for Trends	319
8.7	Relative Efficiency of Randomized Block Design	321
8.8	Cell Mean Model Approach to the RB- <i>p</i> Design	322
8.9	Generalized Randomized Block Design	336
8.10	Advantages and Disadvantages of RB- <i>p</i> and GRB- <i>p</i> Designs	343
8.11	Review Exercises	344

CHAPTER 9 Completely Randomized Factorial Design With Two Treatments 357

9.1	Introduction to Factorial Designs	357
9.2	Description of Completely Randomized Factorial Design	357
9.3	Computational Example for CRF- <i>pq</i> Design	360
9.4	Experimental Design Model for CRF- <i>pq</i> Design	368
9.5	Procedures for Testing Differences Among Means	372
9.6	More on the Interpretation of Interactions	373
9.7	Tests for Trends	386
9.8	Estimating Strength of Association, Effect Size, Power, and Sample Size	395
9.9	Rules for Deriving Expected Values of Mean Squares	400
9.10	Quasi <i>F</i> Statistics	404
9.11	Preliminary Tests on the Model and Pooling Procedures	406
9.12	Analysis of Completely Randomized Factorial Designs With $n = 1$	409
9.13	Cell Means Model Approach to Completely Randomized Factorial Design	411
9.14	Analysis of Completely Randomized Factorial Designs With Missing Observations and Empty Cells	422
9.15	Advantages and Disadvantages of Factorial Designs	431
9.16	Review Exercises	432

CHAPTER 10 Completely Randomized Factorial Design With Three or More Treatments and Randomized Block Factorial Design 439

- 10.1 Introduction to CRF- pqr Design 439
- 10.2 Computational Example for CRF- pqr Design 441
- 10.3 Patterns Underlying Sum-of-Squares Formulas 448
- 10.4 Formulating Coefficient Matrices for the Cell Means Model 451
- 10.5 Introduction to Randomized Block Factorial Design 458
- 10.6 Computational Example for RBF- pq Design 460
- 10.7 Expected Value of Mean Squares and the Sphericity Conditions 465
- 10.8 Cell Means Model Approach to Randomized Block Factorial Design 469
- 10.9 Minimizing Time and Location Effects by Using a Randomized Block Factorial Design 484
- 10.10 Review Exercises 485

CHAPTER 11 Hierarchical Designs 489

- 11.1 Introduction to Hierarchical Designs 489
- 11.2 Computational Example for CRH- $pq(A)$ Design 492
- 11.3 Experimental Design Model for CRH- $pq(A)$ Design 496
- 11.4 Procedures for Testing Differences Among Means 498
- 11.5 Estimating Strength of Association, Effect Size, Power, and Sample Size 500
- 11.6 Description of Other Completely Randomized Hierarchical Designs 502
- 11.7 Cell Means Model for Completely Randomized Hierarchical Design 515
- 11.8 Cell Means Model for Randomized Block Hierarchical Design 521
- 11.9 Advantages and Disadvantages of Hierarchical Designs 530
- 11.10 Review Exercises 531

CHAPTER 12 Split-Plot Factorial Design: Design With Group-Treatment Confounding 541

- 12.1 Description of Split-Plot Factorial Design 541
- 12.2 Computational Example for SPF- $p\cdot q$ Design 544
- 12.3 Experimental Design Model for SPF- $p\cdot q$ Design 550
- 12.4 Some Assumptions Underlying SPF- $p\cdot q$ Design 555
- 12.5 Procedures for Testing Differences Among Means 560
- 12.6 Procedures for Testing Hypotheses About Simple Main Effects and Treatment-Contrast Interactions 566
- 12.7 Relative Efficiency of Split-Plot Factorial Design 569
- 12.8 Computational Procedures for SPF- $pr\cdot q$ Design 570
- 12.9 Computational Procedures for SPF- $prt\cdot q$ Design 579
- 12.10 Computational Procedures for SPF- $p\cdot qr$ Design 583
- 12.11 Computational Procedures for SPF- $p\cdot qrt$ Design 590
- 12.12 Computational Procedures for SPF- $pr\cdot qt$ Design 595

- 12.13** Evaluation of Sequence Effects 595
- 12.14** Cell Means Model Approach to SPF- $p\cdot q$ Design 597
- 12.15** Advantages and Disadvantages of Split-Plot Factorial Designs 613
- 12.16** Review Exercises 613

CHAPTER 13 Analysis of Covariance 621

- 13.1** Introduction to Analysis of Covariance 621
- 13.2** Rationale Underlying Covariate Adjustment 625
- 13.3** Layout and Computational Procedures for CRAC- p Design 633
- 13.4** Some Assumptions Underlying CRAC- p Design 637
- 13.5** Procedures for Testing Differences Among Means in CRAC- p Design 640
- 13.6** Analysis With Two Covariates 642
- 13.7** Analysis of Covariance for Randomized Block Design 646
- 13.8** Analysis of Covariance for Factorial Designs 648
- 13.9** Covariance Versus Stratification 654
- 13.10** Regression Model Approach to Analysis of Covariance 656
- 13.11** Cell Means Model Approach to Analysis of Covariance 660
- 13.12** Advantages and Disadvantages of Analysis of Covariance 663
- 13.13** Review Exercises 664

CHAPTER 14 Latin Square and Related Designs 671

- 14.1** Description of Latin Square Design 671
- 14.2** Construction and Randomization of Latin Squares 672
- 14.3** Computational Example for Latin Square Design 675
- 14.4** Computational Procedures for $n = 1$ 681
- 14.5** Experimental Design Model for Latin Square Design 684
- 14.6** Procedures for Testing Differences Among Means 687
- 14.7** Relative Efficiency of Latin Square Design With $n = 1$ 687
- 14.8** Analysis of Covariance for Latin Square Design 690
- 14.9** Cell Means Model Approach to Latin Square Design 692
- 14.10** Graeco-Latin Square Design 700
- 14.11** Hyper-Graeco-Latin Square Designs 702
- 14.12** Crossover Design 703
- 14.13** Advantages and Disadvantages of Designs Based on a Latin Square 710
- 14.14** Review Exercises 711

CHAPTER 15 Confounded Factorial Designs: Designs With Group-Interaction Confounding 719

- 15.1** Group-Interaction Confounding 719
- 15.2** Use of Modular Arithmetic in Constructing Confounded Designs 722
- 15.3** Computational Procedures for RBCF- 2^2 Design 726

15.4	Experimental Design Model for RBCF- 2^2 Design	729
15.5	Layout and Analysis for RBCF- 2^3 Design	732
15.6	Complete Versus Partial Confounding	739
15.7	Computational Procedures for RBPF- 2^3 Design	740
15.8	Computational Procedures for RBCF- 3^2 and RBPF- 3^2 Designs	749
15.9	Analysis Procedures for Higher-Order Confounded Designs	760
15.10	Alternative Notation and Computational Systems	772
15.11	Computational Procedures for RBPF- 32^2 Design	775
15.12	Cell Means Model Approach to RBCF- p^k Design	785
15.13	Group-Interaction Confounding by Means of a Latin Square	787
15.14	Advantages and Disadvantages of Confounding in Factorial Designs	793
15.15	Review Exercises	796

CHAPTER 16 Fractional Factorial Designs: Designs With Treatment-Interaction Confounding 803

16.1	Introduction to Fractional Factorial Designs	803
16.2	General Procedures for Constructing Completely Randomized Fractional Factorial Designs	805
16.3	Computational Procedures for CRFF- 2^{4-1} Design	810
16.4	Computational Procedures for CRFF- 3^{4-1} Design	814
16.5	Cell Means Model for CRFF- p^{k-i} Design	820
16.6	General Procedures for Constructing RBFF- p^{k-i} Designs	823
16.7	Other Types of CRFF and RBFF Designs	824
16.8	Introduction to Latin Square Fractional Factorial Designs	825
16.9	Computational Procedures for LSFF- $p:p^2$ Design	828
16.10	Computational Procedures for LSFF- p^3t Design	832
16.11	Computational Procedures for LSFF- p^4u Design	838
16.12	Computational Procedures for GLSFF- p^3 Design	840
16.13	Advantages and Disadvantages of Fractional Factorial Designs	841
16.14	Review Exercises	842

APPENDIX A **Rules of Summation 847**

APPENDIX B **Rules of Expectation, Variance, and Covariance 852**

APPENDIX C **Orthogonal Coefficients for Unequal Intervals and Unequal ns 858**

APPENDIX D **Matrix Algebra 863**

APPENDIX E **Tables 891**

APPENDIX F **Answers to Starred Exercises 952**

REFERENCES **1035**

INDEX **1048**