

Contents

<i>About the cover</i>	<i>page</i>	xii
<i>Preface</i>		xiii
1 Vector calculus		1
1.1 Introduction		1
1.2 Definition of a vector		1
1.3 Vector operations		1
1.4 Decomposition of a vector with respect to a basis		5
Exercises		8
2 The concepts of force and moment		10
2.1 Introduction		10
2.2 Definition of a force vector		10
2.3 Newton's Laws		12
2.4 Vector operations on the force vector		13
2.5 Force decomposition		14
2.6 Representation of a vector with respect to a vector basis		17
2.7 Column notation		21
2.8 Drawing convention		24
2.9 The concept of moment		25
2.10 Definition of the moment vector		26
2.11 The two-dimensional case		29
2.12 Drawing convention of moments in three dimensions		32
Exercises		33
3 Static equilibrium		37
3.1 Introduction		37
3.2 Static equilibrium conditions		37
3.3 Free body diagram		40
Exercises		47

4 The mechanical behaviour of fibres	50
4.1 Introduction	50
4.2 Elastic fibres in one dimension	50
4.3 A simple one-dimensional model of a skeletal muscle	53
4.4 Elastic fibres in three dimensions	55
4.5 Small fibre stretches	61
Exercises	66
5 Fibres: time-dependent behaviour	69
5.1 Introduction	69
5.2 Viscous behaviour	71
5.2.1 Small stretches: linearization	73
5.3 Linear visco-elastic behaviour	74
5.3.1 Continuous and discrete time models	74
5.3.2 Visco-elastic models based on springs and dashpots: Maxwell model	78
5.3.3 Visco-elastic models based on springs and dashpots: Kelvin–Voigt model	82
5.4 Harmonic excitation of visco-elastic materials	83
5.4.1 The Storage and the Loss Modulus	83
5.4.2 The Complex Modulus	85
5.4.3 The standard linear model	87
5.5 Appendix: Laplace and Fourier transforms	92
Exercises	94
6 Analysis of a one-dimensional continuous elastic medium	99
6.1 Introduction	99
6.2 Equilibrium in a subsection of a slender structure	99
6.3 Stress and strain	101
6.4 Elastic stress–strain relation	104
6.5 Deformation of an inhomogeneous bar	104
Exercises	111
7 Biological materials and continuum mechanics	114
7.1 Introduction	114
7.2 Orientation in space	115
7.3 Mass within the volume V	117
7.4 Scalar fields	120
7.5 Vector fields	122
7.6 Rigid body rotation	125

7.7	Some mathematical preliminaries on second-order tensors	127
	Exercises	130
8	Stress in three-dimensional continuous media	132
8.1	Stress vector	132
8.2	From stress to force	133
8.3	Equilibrium	134
8.4	Stress tensor	142
8.5	Principal stresses and principal stress directions	146
8.6	Mohr's circles for the stress state	149
8.7	Hydrostatic pressure and deviatoric stress	150
8.8	Equivalent stress	150
	Exercises	152
9	Motion: the time as an extra dimension	156
9.1	Introduction	156
9.2	Geometrical description of the material configuration	156
9.3	Lagrangian and Eulerian description	158
9.4	The relation between the material and spatial time derivative	159
9.5	The displacement vector	161
9.6	The gradient operator	162
9.7	Extra displacement as a rigid body	164
9.8	Fluid flow	166
	Exercises	167
10	Deformation and rotation, deformation rate and spin	170
10.1	Introduction	170
10.2	A material line segment in the reference and current configuration	170
10.3	The stretch ratio and rotation	173
10.4	Strain measures and strain tensors and matrices	176
10.5	The volume change factor	180
10.6	Deformation rate and rotation velocity	180
	Exercises	183
11	Local balance of mass, momentum and energy	186
11.1	Introduction	186
11.2	The local balance of mass	186
11.3	The local balance of momentum	187

11.4	The local balance of mechanical power	189
11.5	Lagrangian and Eulerian description of the balance equations	190
	Exercises	192
12	Constitutive modelling of solids and fluids	194
12.1	Introduction	194
12.2	Elastic behaviour at small deformations and rotations	195
12.3	The stored internal energy	198
12.4	Elastic behaviour at large deformations and/or large rotations	200
12.5	Constitutive modelling of viscous fluids	203
12.6	Newtonian fluids	204
12.7	Non-Newtonian fluids	205
12.8	Diffusion and filtration	205
	Exercises	206
13	Solution strategies for solid and fluid mechanics problems	210
13.1	Introduction	210
13.2	Solution strategies for deforming solids	210
13.2.1	General formulation for solid mechanics problems	211
13.2.2	Geometrical linearity	212
13.2.3	Linear elasticity theory, dynamic	213
13.2.4	Linear elasticity theory, static	213
13.2.5	Linear plane stress theory, static	214
13.2.6	Boundary conditions	218
13.3	Solution strategies for viscous fluids	220
13.3.1	General equations for viscous flow	221
13.3.2	The equations for a Newtonian fluid	221
13.3.3	Stationary flow of an incompressible Newtonian fluid	222
13.3.4	Boundary conditions	223
13.3.5	Elementary analytical solutions	223
13.4	Diffusion and filtration	225
	Exercises	227
14	Solution of the one-dimensional diffusion equation by means of the Finite Element Method	232
14.1	Introduction	232
14.2	The diffusion equation	233
14.3	Method of weighted residuals and weak form of the model problem	235
14.4	Polynomial interpolation	237

14.5	Galerkin approximation	239
14.6	Solution of the discrete set of equations	246
14.7	Isoparametric elements and numerical integration	246
14.8	Basic structure of a finite element program	250
14.9	Example	253
	Exercises	256
15	Solution of the one-dimensional convection-diffusion equation by means of the Finite Element Method	264
15.1	Introduction	264
15.2	The convection-diffusion equation	264
15.3	Temporal discretization	266
15.4	Spatial discretization	269
	Exercises	273
16	Solution of the three-dimensional convection-diffusion equation by means of the Finite Element Method	277
16.1	Introduction	277
16.2	Diffusion equation	278
16.3	Divergence theorem and integration by parts	279
16.4	Weak form	280
16.5	Galerkin discretization	280
16.6	Convection-diffusion equation	283
16.7	Isoparametric elements and numerical integration	284
16.8	Example	288
	Exercises	291
17	Shape functions and numerical integration	295
17.1	Introduction	295
17.2	Isoparametric, bilinear quadrilateral element	297
17.3	Linear triangular element	299
17.4	Lagrangian and Serendipity elements	302
17.4.1	Lagrangian elements	303
17.4.2	Serendipity elements	304
17.5	Numerical integration	305
	Exercises	309
18	Infinitesimal strain elasticity problems	313
18.1	Introduction	313
18.2	Linear elasticity	313

18.3	Weak formulation	315
18.4	Galerkin discretization	316
18.5	Solution	322
18.6	Example	322
	Exercises	324
	<i>References</i>	329
	<i>Index</i>	331