

Contents

1. INTRODUCTION	1
1 Assembly	1
1.1 What is assembly?	1
1.2 Assembly methods	2
1.3 Assembly operations	2
2 Assembly lines	6
2.1 Principle	6
2.2 Line models	7
3 Product and assembly line design	8
3.1 Design decomposition	8
3.2 Influences and interactions	10
4 Scope of the book	11
5 One typical case study	13
6 Disposition	15
2. STATE OF THE ART	19
1 PF and assembly line design	19
1.1 Design methodologies	19
1.2 Integrated design approaches	20
2 PF representation	29
2.1 Terminology	29
2.2 PF structure	32
2.3 Discussion	45
3 Design for assembly	48
3.1 Qualitative analyses	48
3.2 Quantitative analyses	48

3.3	DFA in integrated product and line design	51
3.4	Discussion	55
4	AP representations	57
4.1	Preliminary definitions	58
4.2	Liaison- or command-based representations	58
4.3	Component- and subset- based representations	63
4.4	Discussion	69
5	Assembly planning	71
5.1	Quick browse	71
5.2	PG generation	72
5.3	Proposing SAs	79
6	Line design	80
6.1	Line design methods and algorithms	80
6.2	MHE selection	82
3.	PF AND ASSEMBLY LINE DESIGN METHODOLOGY	85
1	Concurrent engineering and assembly	85
2	Concurrent design and “optimisation” problems	87
2.1	Industrial, multi-objective problems and optimisation	88
2.2	Solution stability and iterative procedures	89
2.3	Concurrent development and design sensitivity	90
2.4	Design choices and solution space pruning	92
2.5	Preliminary conclusions	94
3	Proposed design philosophy for PFs and assembly lines	94
3.1	Main principles	95
3.2	PF structuring, DFA and preliminary AP	95
3.3	Assembly technique and mode selection, detailed AP	98
3.4	Line layout	101
4	Conclusions	103
4.	DESCRIPTION OF PRODUCT FAMILIES	105
1	Proposed PF structure representation	105
1.1	Preliminary definitions	105
1.2	Generic and variant elements	109
1.3	Decomposition of a PF into FEns	111
1.4	Links between the FEns	117
1.5	Description of a FEn	118
1.6	Description of the GCS	118
1.7	Description of the generic links	120

1.8	Graphical representations	121
1.9	FEns and design teams	122
1.10	Synthesis of the model	122
2	Illustrative case study	123
2.1	Early design	123
2.2	Intermediate design	124
2.3	Detailed design	126
3	Conclusions	128
5.	PF STRUCTURING AND PRELIMINARY DFA	129
1	Objectives of the DFA	129
2	Proposed structuring and preliminary DFA issues	130
2.1	How to obtain variations in the subfunctions of a PF?	131
2.2	Issues for VGCs, OGCS and pseudo-varying links	133
2.3	PF structuring and standardisation	135
2.4	Preliminary DFA rules	140
2.5	Summary of the approach	142
3	Case study	144
3.1	Before the application of the DFA	144
3.2	Application of the DFA	146
4	Conclusions	148
6.	REPRESENTATION OF APS FOR PFS	151
1	Proposed AP representation	151
2	Examples	153
3	Conclusions	155
7.	PRELIMINARY ASSEMBLY PLANNING	157
1	Hypotheses on the APS	157
2	Proposed preliminary AP tool	158
2.1	AP methodology	158
2.2	Constraints in the AP generation	159
2.3	Dealing with PCs	160
2.4	Determination of potential base parts	164
2.5	Proposing GSAs	168
2.6	Constructing the PGs for FEns	170
2.7	Merging the APS of FEns into APS for the PF	183
2.8	AP evaluation criteria	189
3	Case study	193

3.1	AP at early design stage	193
3.2	AP after the preliminary design of MagSyst and Box	194
3.3	AP after the preliminary design for the PF	195
4	Conclusions	196
8.	DETAILED DFA AND AP	199
1	A detailed DFA principle for PFS: standardisation	199
2	Joining process and assembly method selection	200
3	Detailed AP of the FEns	201
3.1	Modification of the generic liaison graph	201
3.2	Modification of the AP of the FEns	203
3.3	AP and DFA: releasing PCS	208
3.4	Modification of the AP for the PF	209
3.5	From a PG between GCs to a PG between operations	212
4	Equipment preselection	212
4.1	Decomposing the operations	212
4.2	Selecting the equipment	216
4.3	Finalising the PF design and the AP	217
5	Case study	218
5.1	Design not challenging preliminary results	218
5.2	Design questioning former results	221
5.3	Comparison	223
6	Conclusions	224
9.	LINE LAYOUT	225
1	Line decomposition	226
1.1	Team-oriented assembly	226
1.2	Defining and linking workcentres	226
2	Determination of the conveying system	228
2.1	Conveyor selection in the proposed methodology	229
2.2	Selection methodology	229
2.3	MHE typology and evaluation criteria	229
2.4	Examples	232
3	Logical layout	234
3.1	Essentials on the LB and RP approaches	235
3.2	Whole thing in a nutshell	240
4	Differences between logical and physical layout	241
5	Case study	244

5.1	Old design	244
5.2	New design	245
6	Conclusions	246
10.	CONCLUSIONS AND FURTHER WORK	249
1	Summary of the results and discussion	249
2	Further research	254
Appendices		257
Appendix A Precedence operators		257
1	Operator \preceq	257
2	Operator \prec	258
Appendix B The PROMETHEE II method		259
Appendix C Glossary		263
References		265
Index		279