

Contents

CHAPTER 1. WHY AUTOMATIC ASSEMBLY

INTRODUCTION	1
THE ECONOMIC BASIS FOR AUTOMATIC ASSEMBLY.....	2
Market Share	
Cost Reduction	
Marketing Considerations	
Sociological Considerations	
THE HUMAN FACTOR	10
The Declining Rate of Productivity	
The Age of Consumerism	
Declining Manufacturing Skills	
Market Resistance to Increased Prices	
WHY THE DELAY IN USING AUTOMATIC ASSEMBLY.....	11
Automatic Assembly Remains an Option in Manufacturing	
Automatic Assembly Has a Poor Track Record	
Determining Project Costs	
Seeking Quotations	
DETERMINING NET PRODUCTION.....	19
The Mythology of Capital Expenditure	
AREAS OF APPLICATION.....	20
High Repetitive Labor Content	
Small Parts Production	
Intense Foreign Competition	
Securing Market Dominance	
SOURCES OF AUTOMATIC EQUIPMENT.....	21
In-Plant Development: The Do-It-Yourself Approach	
Using Outside Design Services	
Assembly Machine Builders: Systems Integrators	
FORCES DRIVING ASSEMBLY AUTOMATION.....	24
Quality	
Design For Manufacturing	
Simultaneous Engineering	
Time-To-Market	
Work Cells/Integrated Manufacturing	
SUMMARY	25
References	

CHAPTER 2. PRODUCT DESIGN FOR AUTOMATIC ASSEMBLY

INTRODUCTION	27
PRODUCT DESIGN FOR MECHANIZED ASSEMBLY	28
Types of Assemblies	
Features for Efficient Mechanized Assembly	
COMPONENT DESIGN FOR AUTOMATIC ASSEMBLY	33
Hopperability	
Part Retention by Strip and Web	
Problem Areas	
DESIGNING FOR AUTOMATIC JOINING	37
QUALITY REQUIREMENTS FOR AUTOMATIC ASSEMBLY . . .	39
Measurement of Part Quality in Assembly Terms	
Quality Specifications for Assembly Features	
Problems in Matched Assemblies	
Features for Automatic Inspection	
PRODUCTION AND PURCHASING TEAMWORK	45
SUMMARY	46
References	

CHAPTER 3. SELECTING THE ASSEMBLY MACHINE SYSTEM

INTRODUCTION	47
TYPES OF INDEX	47
Single-Station Machines	
Continuous-Motion Machines	
Intermittent Index	
Power-and-Free Systems	
Energy Considerations	
WORK PATHS	59
Dial-Type Machines	
Linear Machines	
INTEGRAL ASSEMBLY MACHINES	67
Actuation of Individual Stations	
Compatibility with Control Options	
Cam Design	
FACTORS CONCERNING SYSTEMS CHOICE	71
Line Balancing	
Part Size and Weight	
Volume Requirements	
Integration of Manual Operations	
Product Life	
Product Design	

SUMMARY	77
References	

CHAPTER 4. THE ROLE OF THE CONTROL SYSTEM

INTRODUCTION	79
INSTANTANEOUS VERSUS MEMORY CONTROL SYSTEMS ..	83
Instantaneous Control Systems	
Memory or Logic Systems	
CONTROL IMPACT ON MACHINE EFFICIENCY AND NET PRODUCTION	88
The Probability of Random Failure	
Impact of Product Design and Salvage Costs on Control Choice	
MACHINE SEQUENCE CONTROL	92
Microprocessor Based Controllers	
ASSEMBLY PROCESS CONTROLS	95
Indication and Documentation of Process Failure	
SUMMARY	100

CHAPTER 5. FEEDING AND TRANSFER OF PARTS

INTRODUCTION	101
PARTS FEEDING	104
Hand Feeding and Operator-Assist Units	
Magazine Feeders	
Mechanical Feeders	
Vibratory Feeders	
Metering and Dispensing	
THE ROLE OF ESCAPEMENTS	131
PART TRANSFER METHODS	133
Single Motion Units	
Pick-and-Place Units	
Air Transfer of Parts	
Transfer Unit Selection	
SUMMARY	143

**CHAPTER 6. INTEGRATING FABRICATION AND PACKAGING
OPERATIONS WITH ASSEMBLY**

INTRODUCTION	145
PRESS OPERATIONS	146
Complete Fabrication of Stamped Parts	

Completion of Preformed Parts	
Forming Operations on Subassemblies	
SPRING WINDING OPERATIONS	153
Spring Winders	
Secondary Forming Requirements	
Tempering Operations	
Spring Storage	
WIRE TERMINATION	156
SECONDARY MACHINING	157
Conventional Machining	
Laser Machining and Marking	
EJECTING TO PACKAGING OR IN-PROCESS STORAGE	158
Controlled Ejection	
Options to X-Y Coordinate Storage Devices	
Storage Conveyors	
SUMMARY	163

CHAPTER 7. JOINING AND FASTENING

INTRODUCTION	165
INTERFERENCE FITS	166
JOINING BY PRESSURE	166
Isolation of Pressures	
Consistent Deformation	
Safety of Personnel and Machines	
Effect on Productivity	
Methods of Exerting Pressure	
THREADED FASTENERS	175
Headed Screws	
Headless Set Screws	
Stud Driving	
Nut Running	
JOINING BY ADHESIVES, CATALYSTS AND SOLDER	181
Adhesive Bonding	
Solvents and Catalysts	
Soldering and Brazing	
JOINING WITH HEAT AND FRICTION	185
Welding	
Ultrasonic Welding	
Heat Staking	
SUMMARY	192

CHAPTER 8. INSPECTION, GAUGING, AND FUNCTIONAL TESTING

INTRODUCTION	193
INSPECTION FOR WORK ENVIRONMENT SAFETY	193
INSPECTION FOR PRODUCT QUALITY	194
Quality of Incoming Parts	
Quality of Machine Functions	
Quality of the Assembled Product	
INSPECTION DEVICES	201
Criteria for Use of Inspection Units in Mass Production	
Types of Inspection Devices	
DATE CODING, SERIALIZATION, AND PRODUCT DOCUMENTATION	206
SUMMARY	207

CHAPTER 9. MEETING GOVERNMENT REGULATIONS

INTRODUCTION	209
OSHA	210
Operator Safety	
Toxic Material and Wastes	
NATIONAL, STATE, AND LOCAL CODES	221
NEMA & NFPA	
Underwriters'	
Local Codes	
CLEAN ROOM SPECIFICATIONS	222
EXPLOSION-PROOF OPERATION	222
Static Dissipation	
Intrinsically Safe Relays	
Positive Air Pressure	
THE IMPACT OF PRODUCT LIABILITY	223
Assembly System Builders	
The Machine User	
SUMMARY	225

CHAPTER 10. SYSTEMS PROCUREMENT

INTRODUCTION	227
PLACING THE PURCHASE ORDER	228
Defining the Objectives	
Proper Use of Corporate Specifications	

Seeking Quotations	
Writing the Purchase Order	
The Worth of Progress Reports	
MONITORING THE PROJECT	237
Setting Project Milestones	
Communications and Changing Requirements	
The Delivery Impact of Changes	
Using the Engineering Review Wisely	
Preparing the Operators	
SUMMARY	246
CHAPTER 11. MACHINE ACCEPTANCE AND INSTALLATION	
INTRODUCTION	247
ENGINEERING APPROVAL	248
The Model Making Approach	
Formal Tool Design	
Implications of Customer Approval	
DEBUGGING	255
Sample Availability	
The Nature of the Debugging Process	
Using Debugging for Operator Training	
THE ACCEPTANCE RUN	262
The Purpose of the Acceptance Run	
Acceptance for Shipment	
MACHINE INSTALLATION	266
Defining Responsibility	
Maintenance and Operator Training	
TURNING THE MACHINE OVER TO PRODUCTION	268
Routine Maintenance	
Production Logs	
SUMMARY	269
CHAPTER 12. THE PRODUCTION AUDIT	
INTRODUCTION	271
SYSTEMS PERFORMANCE REPORTS	272
The Necessity of Objective Data	
Avoiding the Adjustment Syndrome	
Performance Monitoring Tools	
DOWNTIME AUDITS	276
Discovering Weak Designs	
Improving Routine Maintenance Procedures	

QUALITY AUDITS.....	278
FINANCIAL DATA.....	279
SUMMARY	279
CHAPTER 13. AUTOMATED ASSEMBLY IN THE 21st CENTURY	
INTRODUCTION.....	281
WORK FORCE ISSUES.....	282
Manufacturing Engineering	
College Trained Systems Operators	
SIMULTANEOUS ENGINEERING.....	284
Design for Manufacturing	
Supplier/User Interaction	
SYSTEMS INTEGRATION.....	291
The Trend to Work Cell Plant Design	
New Machine Chassis Developments	
The Drive to Direct Integration	
EMERGING TECHNOLOGIES	298
SUMMARY	298
INDEX	299