

Contents

1	Introduction to the Problems of Relaxation and Diffusion in Complex Systems	1
1.1	Historical Perspective	1
1.2	Relaxation and Diffusion	12
1.2.1	Macroscopic Description of Dynamics: Time- and Frequency-Dependent Mechanical Properties	14
1.2.1.1	Shear Creep and Recovery	14
1.2.1.2	Shear Stress Relaxation	15
1.2.1.3	Dynamic Shear Modulus	16
1.2.1.4	Dynamic Shear Compliance	17
1.2.1.5	Tensile (Bulk, Longitudinal) Compliance and Tensile (Bulk, Longitudinal) Modulus	19
1.2.2	Macroscopic Description of Dynamics: Time- and Frequency-Dependent Dielectric Properties	20
1.2.2.1	Dielectric Permittivity	20
1.2.2.2	Electric Modulus	21
1.2.3	Macroscopic Description: Spectroscopy Based on Other Variables	22
1.2.3.1	Heat Capacity Spectroscopy	22
1.2.3.2	Spectroscopy Based on Other Macroscopic Dynamic Variables	23
1.3	Molecular Description of Dynamics in the Linear Response Regime	24
1.3.1	Dielectric Relaxation	29
1.3.2	Light Scattering	33
1.3.3	Nuclear Magnetic Resonance	34
1.3.4	Neutron Scattering	35
1.3.5	The Green–Kubo Relation Between Transport Coefficients and Time Correlation Functions	37
1.3.6	The Fluctuation–Dissipation Theorem	39
1.4	Obstacles of Progress in Finding a Solution	40

1.4.1	An Unsolved Many-Body Problem	40
1.4.2	Plethora of Experimental Facts: Anomalies are the Real Guides to Solution	41
1.4.3	An Interdisciplinary Research Area: Downside and Upside	44
1.4.3.1	The Downside	44
1.4.3.2	The Upside	45
1.5	Universal (Anomalous) Properties: The Outstanding Guides to Solution of the Problem	46
2	Glass-Forming Substances and Systems	49
2.1	Current Status of the Glass Transition Problem	49
2.2	General Properties and Anomalies	50
2.2.1	Non-exponential Time Correlation Function of the Structural α -Relaxation, $\exp[-(t/\tau_\alpha)^{1-n}]$, the Kohlrausch Stretched Exponential Function	52
2.2.1.1	Crossover of Correlation Function from $\exp(-t/\tau_0)$ to $\exp[-(t/\tau)^{1-n}]$ at t_c , a Temperature-Insensitive Time	63
2.2.1.2	Crossover of Temperature Dependence of Viscosity at High Temperatures	70
2.2.1.3	A Relation Between Primitive Relaxation Time and Many-Body Relaxation Time Resulting from the Crossover at t_c (the Coupling Model)	73
2.2.2	Length Scale and Dynamic Heterogeneous Nature of the Structural Relaxation	88
2.2.2.1	Length Scale from the Free Volume Model . . .	88
2.2.2.2	Length Scale from the Configuration Entropy Model	88
2.2.2.3	Length Scale from the Thermodynamic Fluctuation Theory	95
2.2.2.4	Dynamic Heterogeneity and Its Length Scale .	96
2.2.2.5	Length Scale from Relaxation Behavior of Nanophase-Separated Side-Chain Polymers .	108
2.2.2.6	Length Scale from Nanoconfinement	112
2.2.2.7	Length Scale from Multi-point Dynamical Susceptibilities	118
2.2.2.8	Length Scale Is Not Practical to Use as Measure of Many-Body Dynamics	123
2.2.2.9	Why Fixation on the Length Scale of the α -Relaxation, and Disregard of the Width of the Dispersion?	125
2.2.3	T_g -Scaled Temperature Dependence of η or τ_α and the Steepness or “Fragility” Index	127

2.2.3.1	The T_g -Scaled Plot of η by Oldekop–Laughlin–Uhlmann–Angell	127
2.2.3.2	The Steepness or “Fragility” Index	129
2.2.3.3	Isobaric Fragility m_P Decreases with Increasing Pressure	132
2.2.3.4	The Isochoric “Fragility” m_V Is Significantly Less Than the Isobaric “Fragility” m_P	132
2.2.3.5	Correlation Between Kinetic “Fragility” and Thermodynamic “Fragility”?	133
2.2.3.6	Correlation of Kinetic “Fragility” with Other Quantities?	140
2.2.3.7	Different Patterns of Change of m with the Molecular Weight M of Polymers	141
2.2.3.8	Breakdown of Correlation Between m and n . .	141
2.2.3.9	Restoration of Correlation Between m and n When Restricted to the Same Family . .	144
2.2.3.10	Colloidal Suspension of Soft Spherical Particles: Proving Non-exponentiality (n) and Fragility (m) Are Parallel Consequences of Inter-particle Interaction	146
2.2.4	Invariance of the α -Dispersion to Various Combinations of T and P While Keeping τ_α Constant	150
2.2.4.1	Molecular Glassformers	152
2.2.4.2	Amorphous Polymers	157
2.2.4.3	Ionic Liquids	161
2.2.4.4	Pharmaceutical and Saccharides	162
2.2.4.5	Invariance of the α -Dispersion to Different T and P Combinations at Constant τ_α Investigated by Other Techniques than Dielectric Spectroscopy	164
2.2.4.6	The α -Dispersion of a Component in Binary Polymer Blends Is Invariant to T and P When τ_α Is Constant	165
2.2.4.7	The α -Dispersion of a Component in Mixtures of Two Small Molecular Glassformers Is Invariant to T and P When τ_α Is Constant	166
2.2.4.8	Impact on Theory by T – P Superpositioning of the α -Dispersion at Constant τ_α	168
2.2.5	Other Structural Relaxation Properties Either Governed by or Correlated with the Dispersion of the α -Relaxation	170

2.2.5.1	Failure of a Single Vogel–Fulcher–Tamman–Hesse (VFTH) Expression to Describe the Temperature Dependence of $\tau_\alpha(T)$	171
2.2.5.2	The $Q^{-2/(1-n)}$ -Dependence of τ_α	193
2.2.5.3	Non-linear Enthalpy Relaxation of Glassformers Near and Below T_g	195
2.2.5.4	Correlation Between n and Aging Time	201
2.2.5.5	The Effect of Shear on the Non-equilibrium Structural Dynamics of an Aging Colloidal Suspension of Laponite	205
2.2.5.6	Breakdown of the Stokes–Einstein Equation and the Debye–Stokes–Einstein Relation	206
2.2.5.7	Changes Effected by Mixing with Another Glassformer	232
2.2.5.8	Decrease of Relaxation Time by Nanoconfinement	247
2.2.5.9	Breakdown of Thermorheological Simplicity of Relaxation Mechanisms of Different Time/Length Scales, and Viscoelastic Anomalies of Polymer: Degree Depends on n	251
2.2.5.10	Non-linear Deformation of Amorphous Polymers	267
2.3	A Fundamentally Important Class of Secondary Relaxations	272
2.3.1	Background	272
2.3.2	The Important Class of Secondary Relaxations That Are Well Connected to the Primary α -Relaxation: The Johari–Goldstein β -Relaxations	277
2.3.2.1	Correlation Between the Ratio τ_α/τ_{JG} and n at a Predetermined Value of τ_α	278
2.3.2.2	Good Correspondence Between τ_{JG} and the Primitive Relaxation Time τ_0 at Ambient Pressure	285
2.3.2.3	Excess Loss over the Kohlrausch Fit of the α -Relaxation, or the Excess Wing	301
2.3.2.4	Excess Wing (Unresolved JG β -Relaxation) Eclipsed by the γ -Relaxation	306
2.3.2.5	Encroachment of the JG β -Relaxation Toward the γ -Relaxation: The Cause of the Purported Observation of Anomalous T -Dependence of τ_γ	312

2.3.2.6	Removing the Confusion Caused by the Interpretation of the Excess Wing (EW) of Others	318
2.3.2.7	Digression on NCL	324
2.3.2.8	τ_{JG} Like τ_{α} Is Pressure Dependent, and Co-invariance of n and $\tau_{\alpha}/\tau_{\text{JG}}$ at Constant τ_{α}	327
2.3.2.9	From Causality: Dependence of τ_{α} on T , P , V , and S Originates from That of τ_0 (or τ_{JG})	345
2.3.2.10	Systematic Increase of the Ratio $\tau_{\alpha}/\tau_{\text{JG}}$ (or τ_{α}/τ_0) of a Glassformer A (by Increase of n) on Mixing with Increasing Concentration of a Less Mobile Glassformer B	345
2.3.2.11	Increase of the Ratio $\tau_{\alpha}/\tau_{\text{JG}}$ (or τ_{α}/τ_0) on Polymerizing or Cross-Linking a Glassformer (by Increase of n)	358
2.3.2.12	Systematic Decrease of the Ratio $\tau_{\alpha}/\tau_{\text{JG}}$ (or τ_{α}/τ_0) of a Glassformer A (by Decrease of n) on Mixing with Increasing Concentration of a More Mobile Glassformer B	359
2.3.2.13	Systematic Increase of the Ratio $\tau_{\alpha}/\tau_{\text{JG}}$ (or τ_{α}/τ_0) on Increasing the Molecular Weight of Polymers, Constancy of τ_{JG} or τ_0	362
2.3.2.14	Changing the Ratio $\tau_{\alpha}/\tau_{\text{JG}}$ (or τ_{α}/τ_0) by Change in Tacticity of Polymers, Constancy of τ_{JG} or τ_0	363
2.3.2.15	Change of T -Dependence of τ_{JG} on Crossing T_g	364
2.3.2.16	Doubt on the Universal Presence of the JG β -Relaxation? Glassformers Only Showing a Non-JG Secondary Relaxation	380
2.3.2.17	Change of T -Dependence of Relaxation Strength $\Delta\epsilon_{\text{JG}}$ on Crossing T_g	395
2.3.2.18	Correlation of JG β -Relaxation with α -Relaxation: Evidence from Spin-Lattice Relaxation Weighted Stimulated-Echo Spectroscopy	398
2.3.2.19	JG β -Relaxation in the Glassy State, like the α -Relaxation, Is Sensitive to Thermodynamic (T, P) Path, Thermal History, and Annealing	399

2.3.2.20	Increase of τ_β on Aging in Some Glassformers	405
2.3.2.21	JG Relaxation Responsible for Structural Change Deep in the Glassy State by Aging	408
2.3.2.22	JG β -Relaxation Governs the Rate of Crystal Nucleation, the Initial Process of Crystallization	412
2.3.2.23	JG β -Relaxation in Pharmaceuticals	421
2.3.2.24	Relation Between the Arrhenius Activation Energies of τ_α and τ_{JG} in the Glassy State	430
2.3.2.25	Aging of the JG β -Relaxation Used to Probe Structural Relaxation in the Glassy State	432
2.3.2.26	The Carbohydrates, Monosaccharides, Disaccharides, and Polysaccharides	434
2.3.2.27	JG β -Relaxation (or Primitive Relaxation) of Water	442
2.3.2.28	Hydrated Proteins	474
2.3.2.29	TV^γ -Dependence of τ_{JG}	528
2.3.2.30	Invariance of the Primitive Relaxation Time, τ_0 , to Variations of P and T While Keeping τ_α Constant Deduced from the Same Observed on the Normal Mode Relaxation Time, τ_n , of Type-A Polymers	543
2.3.2.31	TV^γ -Dependence of the Primitive Relaxation Time, τ_0 , Same as that of the Normal Mode Relaxation Time, τ_n , of Type-A Polymers	546
2.3.2.32	Calorimetric Detection of JG Relaxation	548
2.3.2.33	JG β -Relaxation Causes Cage Decay and Terminates the NCL	550
2.3.2.34	Change of T -Dependence of NCL at T_g in Analogy to the JG β -Relaxation Strength	559
2.3.2.35	Correlation Between the Level of NCL at T_g and $n(T_g)$	562
2.3.2.36	Fast Relaxation (NCL) Senses the Hole Volume from PALS	569
2.3.2.37	Comparison of the MCT Description of Caged Dynamics with NCL	573
2.3.2.38	Conversion of α -Relaxation to the JG β -Relaxation or Primitive Relaxation by Suppression of Cooperativity	587
2.3.2.39	Connection Between the Fast Primitive Relaxation and the Slow Structural Relaxation of Aging Colloidal Suspension of Laponite	610

2.3.2.40	Which Criteria Are Most Critical for Identification of the Johari–Goldstein β -Relaxation?	611
2.3.2.41	Broadening of α -Relaxation and Concomitant <i>Increase</i> of Separation from the JG β -Relaxation in Glycerol and Threitol at Elevated Pressure	619
2.3.2.42	Narrowing of α -Relaxation and Concomitant <i>Decrease</i> of Separation from the JG β -Relaxation at Elevated Pressure	622
2.3.2.43	JG β -Relaxation of Aqueous Mixture Under High Pressure: Water–Propylene Glycol Oligomer Mixtures	625
2.3.2.44	JG β -Relaxation of Aqueous Mixture Under High Pressure: Water–Fructose Mixtures	628
2.3.2.45	Evidences of Primitive or β -Relaxation and Faster Relaxation Are Responsible for the Stabilization of Dried Protein in Sugar-Based Glass	628
3	Universal Properties of Relaxation and Diffusion in Interacting Complex Systems	639
3.1	Introduction	639
3.2	Universal Properties	642
3.2.1	The Kohlrausch Stretched Exponential Correlation Function $\exp[-(t/\tau)^{1-n}]$	642
3.2.1.1	Mean-Square Displacement of Diffusion in Interacting Systems	643
3.2.1.2	Space-Time Pictures of Motions of Li^+ Ions Equivalent to Those of Motions of Colloidal Particles by Confocal Microscopy	650
3.2.1.3	Support from Conductivity Relaxation Data of Crystalline, Glassy, and Molten Ionic Conductors	653
3.2.2	Stronger Interaction/Constraints Lead to Larger n	656
3.2.2.1	Ionically Conducting Systems	656
3.2.2.2	Entangled Polymer Chains	657
3.2.2.3	Semidilute Polymer Solutions and Associating Polymer Solutions	657
3.2.2.4	Junction Dynamics of Cross-Linked Polymers	658
3.2.3	Crossover from $\exp(-t/\tau_0)$ to $\exp[-(t/\tau)^{1-n}]$ at t_c	658
3.2.3.1	Ionically Conducting Systems	658
3.2.3.2	Entangled Polymer Chains	670
3.2.3.3	Colloidal Suspensions	671
3.2.3.4	Semidilute Polymer Solutions	673

3.2.3.5	Polymeric Cluster Solutions	673
3.2.3.6	Associating or Aggregating Polymer Solutions	674
3.2.4	Anomalous $Q^{-2/(1-n)}$ Dependence of τ	675
3.2.5	Different Correlation Functions of the Same Relaxation Can Have Different Kohlrausch Exponents (1– n), Relaxation Times τ , and T -Dependences	679
3.2.5.1	Glassy Ionic Conductors: Conductivity vs. NMR	680
3.2.5.2	Entangled Polymer Chains: Self-Diffusion vs. Viscosity	689
3.2.5.3	Semidilute Polymer Solutions	694
3.2.6	Recovering or Discovering the Primitive Relaxation	697
3.2.6.1	Influence of Mesophase Structures on the β -Relaxation in Side-Chain Liquid Crystal Polymers (SCLCPs)	699
3.2.6.2	Dynamics of Cross-Linked Junction of a Polymer Network	703
3.2.6.3	Cooperative Oxygen Ion Dynamics in $\text{Gd}_2\text{Ti}_{2-y}\text{Zr}_y\text{O}_7$	709
3.2.6.4	The Crystalline Lithium Ionic Conductor $\text{Li}_{3x}\text{La}_{2/3-x}\text{TiO}_3$ (LLTO)	711
3.2.6.5	The Crystalline Lithium Ion Conductor $\text{Li}_{1.2}\text{Ti}_{1.8}\text{Al}_{0.2}(\text{PO}_4)_3$	714
3.2.6.6	Ionic Conductivity of Nanometer Thin Films of Yttria-Stabilized Zirconia	715
3.2.6.7	Activation Energy of the Snoek–Köster Relaxation in Cold-Worked, Body-Centered Cubic Metals	718
3.2.6.8	Precipitates in Al–Ag Alloys, Ta–H, and Ti–H Systems	721
3.2.6.9	Grain Boundary Relaxation	722
3.2.6.10	Conformational Transition Energy Barrier of Polymers	722
3.2.7	Changes Effected by Mixing or Interfacing	722
3.2.7.1	Global Chain Dynamics of Each Component in Binary Polymer Blends	723
3.2.7.2	Other Examples of Change of Global Chain Dynamics of Entangled Polymers by Mixing	727
3.2.7.3	Mixed Alkali Effect in Ionic Conductors	728
3.2.8	Evidence of Ion Transport Governed by Ion–Ion Interaction from Molecular Dynamics Simulation	736

3.2.9	Haven Ratio, Breakdown of Nernst–Einstein Relation: Analogue of Breakdown of Stokes–Einstein Relation	737
3.2.9.1	The Haven Ratio for Mixed Alkali Glass	739
3.2.10	Caged Dynamics, Nearly Constant Loss, and Termination by the Primitive Relaxation	739
3.2.10.1	Caution for Those Who Prefer Data Represented by $\sigma'(\nu)$ than $M^*(\nu)$	749
3.2.10.2	Rationalization of the Observed Properties of NCL by Its Relation to the Primitive Relaxation	750
3.2.11	A Problem Related to Glass Transition: Breakdown of Thermorheological Simplicity and Associated Viscoelastic Anomalies in Polymers	754
3.2.11.1	A Conundrum	755
3.2.11.2	Problems Encountered in an Explanation of the Breakdown of Thermorheological Simplicity	756
3.2.12	Looking Out for Universal Dynamics in Other Complex Interacting Systems	758
3.2.12.1	Charge Density Wave Systems	759
3.2.12.2	Aqueous Colloidal Dispersions of Magnetic Nanoparticles	760
4	Afterword	765
References		773
Index		823