

Contents

Preface	vii
Chapter 1. Forces in Joints	1
1.1 Introduction	1
1.2 Static Analysis of Forces in Joints	1
Forces in the Elbow Joint	1
Forces in the Hip Joint	6
Clinical Significance of High Joint Forces	10
1.3 Hip Forces in Human Ancestors	11
1.4 The Three-Force Rule	14
1.5 Indeterminate Joint Problems	16
1.6 Equine Fetlock Forces	20
1.7 Summary and Further Reading	23
1.8 Exercises	24
Chapter 2. Skeletal Biology	29
2.1 Introduction	29
2.2 The Shapes of Bones	30
2.3 Types of Bone Tissue	31
Trabecular Vs. Compact Bone	32
Lamellar Vs. Woven Bone	34
Primary Vs. Secondary Bone	37
2.4 Composition of Bone	39
Quantitative Representation of Bone Composition	40
Basic Stereology	42
2.5 Bone Cells	44
2.6 Cartilage	50
Composition of Cartilage	50
Mechanical Significance of Cartilage	52
Organization of Articular Cartilage	53
The Role of Cartilage in Growth	55
2.7 Longitudinal Growth of Bones	55

Development of Metaphyseal Trabeculae	58
Growth of the Physis	59
Closure of the Physes	59
2.8 Modeling and Remodeling of Bone	60
Modeling Vs. Remodeling	60
Modeling	61
Remodeling	62
Cellular Events in Modeling and Remodeling	65
Skeletal Envelopes and Senile Bone Loss	66
Regional Acceleratory Phenomenon	66
2.9 Fracture Healing	66
Basic Concepts	67
Important Tissues in Fracture Healing	68
Three Biological Phases	69
Four Biomechanical Stages	72
2.10 Summary and Further Reading	77
2.11 Exercises	77
Chapter 3. Analysis of Bone Remodeling	79
3.1 Introduction	79
The A-R-F Sequence	80
Osteonal Origins and Trajectories	83
Remodeling Cycle Duration	84
3.2 Histomorphometric Measurement of Osteonal Remodeling	86
Assumptions	86
Measurements	88
Calculating BMU-Level Results	89
Calculating Tissue-Level Results	91
Label Escape Error	92
True Vs. Histologic BMU Activation Frequency	93
3.3 Remodeling Details	96
Activation: What Initiates New BMUs?	96
Resorption: Out with the Old	98
Refilling: In with the New	101
3.4 Long-Term Effects of Osteonal Remodeling:	
Implications for the Aging Skeleton	112
Osteonal Overlapping	113
The Random Remodeling Assumption	114
Mathematical Theories	114
Comparison of the Theoretical Results with Experimental Data	117
Another Theoretical Approach to Bone Remodeling	120
3.5 Summary and Further Reading	122
3.6 Exercises	123

Chapter 4. Mechanical Properties of Bone	127
4.1 Introduction	127
4.2 Fundamentals of Solid Mechanics	127
Strength and Stiffness of a Structure	128
Stress and Strain	129
Principal Directions	131
Strength and Stiffness of a Material	131
Generalized Hooke's Law: Anisotropy	133
4.3 Determinants of the Strength of a Whole Bone	134
Mechanics	134
Examples	136
Mechanical Failure of Whole Bones	139
Relationship to Modeling and Remodeling	142
4.4 Material Properties of Cortical Bone	143
Properties of Individual Secondary Osteons	144
Effects of Osteons on Bone Mechanical Properties	148
Anisotropy of Cortical Bone Mechanical Properties	151
Determinants of Osteonal Bone's Mechanical Properties	156
4.5 Material Properties of Cancellous Bone	165
Stress-Strain Curves for Cancellous Bone	165
The Three Determinants of Cancellous Bone Mechanical Properties	168
Modeling Cancellous Bone as a Cellular System of Plates or Struts	174
Invariance of Yield Strain	175
4.6 Predicting Material Properties: Bone as a Composite Material	176
4.7 Summary and Additional Reading	177
4.8 Exercises	178
Chapter 5. Fatigue and Fracture Resistance of Bone	181
5.1 Introduction	181
5.2 Basic Fracture Mechanics	182
Linear Elastic Fracture Mechanics	183
It Takes Energy to Propagate a Crack	188
Beyond the Linear Theory: Real Cracks Have Ears	189
Crack Growth and Fatigue	191
5.3 Fatigue Behavior of Bone	191
The S-N Curve	191
Fatigue Damage in Bone	192
5.4 Creep Behavior of Bone and its Relationship to Fatigue	193
5.5 Fatigue Behavior of Fiber-Reinforced Composite Laminates	196
The Birth and Growth of Cracks	197
Material Strength and Fiber Diameter	197
The Road to Failure	198

5.6 Osteonal Bone as a Fibrous Lamellar Composite Material	200
Osteonal Bone's Road to Failure	200
Bone Toughness	202
Controlled Crack Propagation Studies	202
Mathematical Analysis of Osteonal Pullout	203
Comparing Theory with Data	204
Crack Initiation	206
Crack Stopping	207
Strain Rate	208
Effect of Remodeling	208
5.7 Modeling Fatigue Damage Effects in Osteonal Bone	209
Why Would Cracks Be Stopped in Tension but Not in Compression?	212
If Cracks Are Self-Limiting in Tensile Fatigue but Not in Compressive Fatigue, Why Is Fatigue Life Longer in Compression Than in Tension?	213
5.8 The Role of Fatigue in Activating Bone Remodeling	214
Random or Directed Repair	214
The Historical Perspective	215
Microdamage and Bone Fragility in the Elderly	216
5.9 Modeling Stress Fractures	217
5.10 Summary and Additional Reading	222
5.12 Exercises	223
Chapter 6. Mechanical Adaptability of the Skeleton	225
6.1 Introduction	225
6.2 The Historical Context	226
The Mechanical Adaptability Hypothesis	230
Clinical Problems and Mechanical Adaptability	232
6.3 Self-Correction of Abnormally Curved Bones	233
Frost's Flexural Neutralization Theory	233
Stress Gradients and Fluid Flows	234
Related Experimental Results	236
6.4 Some Important Experiments	237
Measurement of Strain in Living Animals	237
Osteotomy Experiments: Surgically Overloaded Bones	240
Canine Disuse Experiments	241
The Porcine Exercise Experiment	242
Avian Isolated Ulna Experiments	242
Rat Tibia Bending Experiments	243
Summary	244
6.5 Some Additional Theories	245
Pauwels' Stress Magnitude Theory: Control of Modeling Drifts	245
Adaptive Elasticity Theory: Control of Density or Modeling Drifts	247

What Controls Osteonal Tunneling Directions?	248
Adaptive Finite-Element Models: Control of Density	251
Self-Trabeculating Models: Control of Density and Trabecular Alignment	254
Synthesis	259
Frost's Mechanostat Theory	260
Relationship of Mechanically Adaptive Responses to Other Control Factors	262
Mechanical Adaptability and Damage Repair	263
6.6 Mechanical Adaptability in Cartilage	264
The Carter-Wong Chondral Calcification Theory	264
Frost's Chondral Modeling Theory	266
6.7 Mechanical Adaptability and Evolutionary Adaptability	268
Somatic Vs. Evolutionary Adaptation	268
A Nonskeletal Example	269
Somatic Change in the Skeleton	270
Somatic Vs. Evolutionary Effects	270
6.8 Summary and Further Reading	271
6.9 Exercises	271
Chapter 7. Synovial Joint Mechanics	275
7.1 Introduction	275
Functions of a Joint	276
Joint Diseases	276
7.2 Mechanical Properties of Cartilage	278
Initial Points	278
Structure of Articular Cartilage	279
Permeability	280
Indentation Testing	281
Tensile Tests	281
Biphasic Theory of Articular Cartilage	283
7.3 Lubrication of Joints	289
Friction	289
Wear	290
Types of Lubrication	291
Synovial Joint Lubrication	300
Diversity of Joint Architecture	303
7.4 Summary and Further Reading	305
7.5 Exercises	305
Chapter 8. Mechanical Properties of Ligament and Tendon	309
8.1 Introduction	309
8.2 Functional Considerations	310
Ligament	310

Tendon	310
8.3 Structure and Composition	311
Ligament	311
Tendon	312
8.4 Mechanical Behavior	315
Quasistatic Tensile Properties	315
Viscoelastic Properties	318
Mathematical Modeling	320
Age and Mechanical Behavior	323
8.5 Mechanical Testing	324
Determination of Resting Length	326
Architectural Implications	326
Testing Environment	327
8.6 Functions at the Junctions	329
The Myotendinous Junction	329
Insertions: Sites of Ligament-to-Bone and Tendon-to-Bone	
Attachment	330
8.7 Functional Adaptation and Specialization	332
Determinants of Tendon Architecture	333
Sites of Tendon Compression	335
Flexors and Extensors	338
8.8 Pathology and Healing	339
Ligament	339
Tendon	340
Immobilization, Exercise, and Passive Motion	340
8.9 Surgical Repair	342
Anterior Cruciate Ligament	342
Supraspinatus Tendon (Rotator Cuff)	344
Flexor Tendons of the Hand	345
8.10 Summary and Further Reading	346
8.11 Exercises	347
Bibliography	349
Index	381