

Contents

Preface *page* xiii

Part I Introduction

1	Introduction	3
1.1	What this monograph is about	3
1.2	Some experiments	7
1.3	Continuum mechanics	9
1.4	Quasilinear systems	10
1.5	Outline of monograph	11

Part II Purely Mechanical Theory

2	Two-Well Potentials, Governing Equations and Energetics	19
2.1	Introduction	19
2.2	Two-phase nonlinearly elastic materials	20
2.3	Field equations and jump conditions	25
2.4	Energetics of motion, driving force and dissipation inequality	27
3	Equilibrium Phase Mixtures and Quasistatic Processes	32
3.1	Introduction	32
3.2	Equilibrium states	33
3.3	Variational theory of equilibrium mixtures of phases	37
3.4	Quasistatic processes	42
3.5	Nucleation and kinetics	44
3.6	Constant elongation rate processes	47
3.7	Hysteresis	53

4 Impact-Induced Transitions in Two-Phase	
Elastic Materials	59
4.1 Introduction	59
4.2 The impact problem for trilinear two-phase materials	61
4.2.1 The constitutive law	61
4.2.2 The impact problem	64
4.3 Scale-invariant solutions of the impact problem	66
4.3.1 Solutions without a phase transition	66
4.3.2 Solutions with a phase transition: The two-wave case	67
4.3.3 Solutions with a phase transition: The one-wave case	68
4.3.4 The totality of solutions	69
4.4 Nucleation and kinetics	71
4.5 Comparison with experiment	74
4.6 Other types of kinetic relations	77
4.7 Related work	77

Part III Thermomechanical Theory

5 Multiple-Well Free Energy Potentials	85
5.1 Introduction	85
5.2 Helmholtz free energy potential	86
5.3 Potential energy function and the effect of stress	88
5.4 Example 1: The van der Waals Fluid	90
5.5 Example 2: Two-phase martensitic material with cubic and tetragonal phases	95
6 The Continuum Theory of Driving Force	105
6.1 Introduction	105
6.2 Balance laws, field equations and jump conditions	106
6.2.1 Balances of momentum and energy in integral form	106
6.2.2 Localization of the balance laws	106
6.3 The second law of thermodynamics and the driving force	108
6.3.1 Entropy production rate	108
6.3.2 Driving force and the second law	110
6.3.3 Driving force in the case of mechanical equilibrium	111
7 Thermoelastic Materials	113
7.1 Introduction	113
7.2 The thermoelastic constitutive law	113
7.2.1 Relations among stress, deformation gradient, temperature and specific entropy	113

7.2.2	The heat conduction law	116
7.2.3	The partial differential equations of nonlinear thermoelasticity	116
7.2.4	Thermomechanical equilibrium	117
7.3	Stability of a thermoelastic material	118
7.4	A one-dimensional special case: uniaxial strain	120
8	Kinetics and Nucleation	124
8.1	Introduction	124
8.2	Nonequilibrium processes, thermodynamic fluxes and forces, kinetic relation	124
8.3	Phenomenological examples of kinetic relations	127
8.4	Micromechanically based examples of kinetic relations	128
8.4.1	Viscosity-strain gradient model	130
8.4.2	Thermal activation model	131
8.4.3	Propagation through a row of imperfections	133
8.4.4	Kinetics from atomistic considerations	134
8.4.5	Frenkel-Kontorowa model	136
8.5	Nucleation	139
Part IV One-Dimensional Thermoelastic Theory and Problems		
9	Models for Two-Phase Thermoelastic Materials in One Dimension	149
9.1	Preliminaries	149
9.2	Materials of Mie-Grüneisen type	151
9.3	Two-phase Mie-Grüneisen materials	153
9.3.1	The trilinear material	153
9.3.2	Stability of phases of the trilinear material	156
9.3.3	Other two-phase materials of Mie-Grüneisen type	159
10	Quasistatic Hysteresis in Two-Phase Thermoelastic Tensile Bars	163
10.1	Preliminaries	163
10.2	Thermomechanical equilibrium states for a two-phase material	164
10.3	Quasistatic processes	166
10.4	Trilinear thermoelastic material	167
10.5	Stress cycles at constant temperature	169
10.6	Temperature cycles at constant stress	173

10.7 The shape-memory cycle	175
10.8 The experiments of Shaw and Kyriakides	176
10.9 Slow thermomechanical processes	178
11 Dynamics of Phase Transitions in Uniaxially Strained Thermoelastic Solids	181
11.1 Introduction	181
11.2 Uniaxial strain in adiabatic thermoelasticity	182
11.2.1 Field equations, jump conditions and driving force	182
11.2.2 The trilinear Mie-Grüneisen thermoelastic material	183
11.3 The impact problem	185
11.3.1 Formulation: Scale-invariant solutions	185
11.3.2 Solutions with no phase transition	186
11.3.3 Solutions with a phase transition	188

Part V Higher Dimensional Problems

12 Statics: Geometric Compatibility	197
12.1 Preliminaries	197
12.2 Examples	200
13 Dynamics: Impact-Induced Transition in a CuAlNi Single Crystal	209
13.1 Introduction	209
13.2 Preliminaries	210
13.3 Impact without phase transformation	212
13.4 Impact with phase transformation	214
13.5 Application to austenite- β'_1 martensite transformation in CuAlNi	217
13.5.1 Experimental data	217
13.5.2 Phase boundary speed	218
13.5.3 Driving force	218
13.5.4 Kinetic law	219
14 Quasistatics: Kinetics of Martensitic Twinning	221
14.1 Introduction	221
14.2 The material and loading device	222
14.3 Observations	223
14.4 The model	225
14.5 The energy of the system	226
14.5.1 Elastic energy of the specimen	226
14.5.2 Loading device energy	227
14.5.3 Summary	228

14.6 The effect of the transition layers: Further observations	229
14.7 The effect of the transition layers: Further modeling	230
14.8 Kinetics	231
<i>Author Index</i>	235
<i>Subject Index</i>	238