

CONTENTS

PREFACE	x
INTRODUCTION	xii
1 Fundamentals of linear thermoelasticity with finite wave speeds	1
1.1 Fundamentals of classical thermoelasticity	1
1.1.1 Basic considerations	1
1.1.2 Global balance law in terms of (u_i, ϑ)	7
1.1.3 Global balance law in terms of (S_{ij}, q_i)	9
1.2 Fundamentals of thermoelasticity with one relaxation time	11
1.2.1 Basic considerations	11
1.2.2 Global balance law in terms of (u_i, ϑ)	14
1.2.3 Global balance law in terms of (S_{ij}, q_i)	15
1.3 Fundamentals of thermoelasticity with two relaxation times	18
1.3.1 Basic considerations	18
1.3.2 Global balance law in terms of (u_i, ϑ)	25
1.3.3 Global balance law in terms of (S_{ij}, ϑ)	26
2 Formulations of initial-boundary value problems	30
2.1 Conventional and non-conventional characterization of a thermoelastic process	30
2.1.1 Two mixed initial-boundary value problems in the L-S theory	31
2.1.2 Two mixed initial-boundary value problems in the G-L theory	33
2.2 Relations among descriptions of a thermoelastic process in terms of various pairs of thermomechanical variables	34
3 Existence and uniqueness theorems	37
3.1 Uniqueness theorems for conventional and non-conventional thermoelastic processes	37
3.2 Existence theorem for a non-conventional thermoelastic process	43
4 Domain of influence theorems	51
4.1 The potential-temperature problem in the Lord-Shulman theory	51
4.2 The potential-temperature problem in the Green-Lindsay theory	59
4.3 The natural stress-heat-flux problem in the Lord-Shulman theory	65

4.4	The natural stress–temperature problem in the Green–Lindsay theory	71
4.5	The displacement–temperature problem for an inhomogeneous anisotropic body in the L–S and G–L theories	80
4.5.1	A thermoelastic wave propagating in an inhomogeneous anisotropic L–S model	80
4.5.2	A thermoelastic wave propagating in an inhomogeneous anisotropic G–L model	83
5	Convolutional variational principles	86
5.1	Alternative descriptions of a conventional thermoelastic process in the Green–Lindsay theory	86
5.2	Variational principles for a conventional thermoelastic process in the Green–Lindsay theory	93
5.3	Variational principle for a non-conventional thermoelastic process in the Lord–Shulman theory	103
5.4	Variational principle for a non-conventional thermoelastic process in the Green–Lindsay theory	106
6	Central equation of thermoelasticity with finite wave speeds	111
6.1	Central equation in the Lord–Shulman and Green–Lindsay theories	111
6.2	Decomposition theorem for a central equation of Green–Lindsay theory. Wave-like equations with a convolution	114
6.3	Speed of a fundamental thermoelastic disturbance in the space of constitutive variables	127
6.4	Attenuation of a fundamental thermoelastic disturbance in the space of constitutive variables	139
6.4.1	Behavior of functions $\hat{k}_{1,2}$ for a fixed relaxation time t_0	140
6.4.2	Behavior of functions $\hat{k}_{1,2}$ for a fixed ϵ	141
6.5	Analysis of the convolution coefficient and kernel	143
6.5.1	Analysis of $\hat{\lambda}$ at fixed t_0	143
6.5.2	Analysis of $\hat{\lambda}$ at fixed ϵ	144
6.5.3	Analysis of the convolution kernel	146
7	Exact aperiodic-in-time solutions of Green–Lindsay theory	152
7.1	Fundamental solutions for a 3D bounded domain	152
7.2	Solution of a potential–temperature problem for a 3D bounded domain	164
7.3	Solution for a thermoelastic layer	170
7.4	Solution of Nowacki type; spherical wave of a negative order	175
7.5	Solution of Danilovskaya type; plane wave of a negative order	192
7.6	Thermoelastic response of a half-space to laser irradiation	197
8	Kirchhoff-type formulas and integral equations in Green–Lindsay theory	217
8.1	Integral representations of fundamental solutions	217

8.2	Integral equations for fundamental solutions	221
8.3	Integral representation of a solution to a central system of equations	222
8.4	Integral equations for a potential–temperature problem	232
9	Thermoelastic polynomials	241
9.1	Recurrence relations	241
9.2	Differential equation	249
9.3	Integral relation	252
9.4	Associated thermoelastic polynomials	254
10	Moving discontinuity surfaces	257
10.1	Singular surfaces propagating in a thermoelastic medium; thermoelastic wave of order n (≥ 0)	257
10.2	Propagation of a plane shock wave in a thermoelastic half-space with one relaxation time	261
10.3	Propagation of a plane acceleration wave in a thermoelastic half-space with two relaxation times	270
11	Time-periodic solutions	280
11.1	Plane waves in an infinite thermoelastic body with two relaxation times	280
11.2	Spherical waves produced by a concentrated source of heat in an infinite thermoelastic body with two relaxation times	294
11.3	Cylindrical waves produced by a line heat source in an infinite thermoelastic body with two relaxation times	302
11.4	Integral representation of solutions and radiation conditions in the Green–Lindsay theory	310
11.4.1	Integral representations and radiation conditions for the fundamental solution in the Green–Lindsay theory	310
11.4.2	Integral representations and radiation conditions for the potential–temperature solution in the Green–Lindsay theory	314
12	Physical aspects and applications of hyperbolic thermoelasticity	321
12.1	Heat conduction	321
12.1.1	Physics viewpoint and other theories	321
12.1.2	Consequence of Galilean invariance	323
12.1.3	Consequence of continuum thermodynamics	325
12.2	Thermoelastic helices and chiral media	329
12.2.1	Homogeneous case	329
12.2.2	Heterogeneous case and homogenization	332
12.2.3	Plane waves in non-centrosymmetric micropolar thermoelasticity	333
12.3	Surface waves	336

12.4	Thermoelastic damping in nanomechanical resonators	339
12.4.1	Flexural vibrations of a thermoelastic Bernoulli–Euler beam	339
12.4.2	Numerical results and discussion	342
12.5	Fractional calculus and fractals in thermoelasticity	343
12.5.1	Anomalous heat conduction	343
12.5.2	Fractal media	346
13	Non-linear hyperbolic rigid heat conductor of the Coleman type	352
13.1	Basic field equations for a 1D case	352
13.2	Closed-form solutions	355
13.2.1	Closed-form solution to a time-dependent heat-conduction Cauchy problem	355
13.2.2	Travelling-wave solutions	358
13.3	Asymptotic method of weakly non-linear geometric optics applied to the Coleman heat conductor	366
REFERENCES		383
ADDITIONAL REFERENCES		392
NAME INDEX		404
SUBJECT INDEX		408