

# Contents

|                        |    |
|------------------------|----|
| <i>Preface</i>         | v  |
| <i>List of Symbols</i> | xv |

## PART I: Physics of Semiconductors

|                                                         |           |
|---------------------------------------------------------|-----------|
| <b>1. Quantum Mechanics of Semiconductors</b>           | <b>3</b>  |
| 1.1 Essence of Quantum Mechanics                        | 4         |
| 1.2 Heisenberg's Uncertainty Principle                  | 7         |
| 1.3 Schrödinger Equation                                | 9         |
| 1.4 Electron as a Wave Packet                           | 13        |
| 1.5 Simple Harmonic Oscillator                          | 28        |
| 1.6 The Central Field Problem: Hydrogen-like Atom       | 29        |
| <i>Solved Problems</i>                                  | 30        |
| <i>Review Questions and Problems</i>                    | 36        |
| <b>2. Physical Statistics of Semiconductors</b>         | <b>40</b> |
| 2.1 Symmetry, Degeneracy, and Removal of Degeneracy     | 40        |
| 2.2 Description of the State of a Macroscopic System    | 41        |
| 2.3 Definitions of Thermal Equilibrium and Steady State | 45        |
| 2.4 Classical and Quantum Statistics                    | 45        |
| 2.5 Distribution Function                               | 45        |
| <b>3. Bonds and Bands</b>                               | <b>47</b> |
| 3.1 Atomic Model and Electron Energies                  | 47        |
| 3.2 Form of the Forces                                  | 48        |
| 3.3 Atomic Bonding                                      | 49        |
| 3.4 Energy Level Splitting                              | 52        |
| 3.5 Energy Band Formation                               | 52        |
| 3.6 Classification of Solids                            | 55        |
| 3.7 Crystal Structure                                   | 56        |
| 3.8 Diamond and Zinc Blende Structure                   | 60        |
| 3.9 Crystal Defects                                     | 61        |
| <i>Solved Problems</i>                                  | 66        |
| <i>Review Questions and Problems</i>                    | 69        |
| <b>4. Practical Semiconductors</b>                      | <b>71</b> |
| 4.1 Intrinsic Semiconductors                            | 71        |

|           |                                                                           |            |
|-----------|---------------------------------------------------------------------------|------------|
| 4.2       | Charge Carriers in Semiconductors: Photons, Phonons, Electrons, and Holes | 74         |
| 4.3       | Concept of Effective Mass                                                 | 76         |
| 4.4       | Density of States                                                         | 79         |
| 4.5       | Fermi-Dirac Distribution Function                                         | 80         |
| 4.6       | Densities of States in Conduction and Valence Bands                       | 82         |
| 4.7       | Boltzmann Approximation                                                   | 83         |
| 4.8       | Intrinsic Carrier Concentration                                           | 84         |
| 4.9       | Law of Mass Action                                                        | 87         |
| 4.10      | Charge-electroneutrality Equation                                         | 88         |
| 4.11      | Intrinsic Semiconductors: Fermi Level Determination                       | 90         |
| 4.12      | Defects and Impurities                                                    | 91         |
| 4.13      | Extrinsic Semiconductors                                                  | 93         |
| 4.14      | Calculation of Extrinsic Carrier Concentration                            | 97         |
| 4.15      | Calculation of the Position of Extrinsic Fermi Level                      | 99         |
| 4.16      | Compensated Semiconductors                                                | 102        |
|           | <i>Solved Problems</i>                                                    | 103        |
|           | <i>Review Questions and Problems</i>                                      | 108        |
| <b>5.</b> | <b>Doping of Semiconductors</b>                                           | <b>112</b> |
| 5.1       | Non-degenerate and Degenerate Semiconductors                              | 112        |
| 5.2       | Conditions for Degeneracy and Non-degeneracy                              | 113        |
| 5.3       | Consequences of Heavy Doping                                              | 118        |
|           | <i>Solved Problems</i>                                                    | 125        |
|           | <i>Review Questions and Problems</i>                                      | 128        |
| <b>6.</b> | <b>Carrier Processes in Semiconductors</b>                                | <b>130</b> |
| 6.1       | Nature of Electrical Conduction in Solids                                 | 131        |
| 6.2       | Free Carrier Mobility and its Temperature Dependence                      | 137        |
| 6.3       | Intrinsic and Impurity Conduction in Semiconductors                       | 141        |
| 6.4       | Diffusion                                                                 | 144        |
| 6.5       | Carrier Generation and Recombination                                      | 147        |
| 6.6       | Generation and Recombination of Minority Carriers in Semiconductors       | 150        |
|           | <i>Solved Problems</i>                                                    | 161        |
|           | <i>Review Questions and Problems</i>                                      | 165        |
| <b>7.</b> | <b>Bandgap Engineering</b>                                                | <b>168</b> |
| 7.1       | Bandgap Engineering Techniques                                            | 168        |
| 7.2       | Alloying Phenomenon                                                       | 170        |
| 7.3       | Heterostructures: Devices Based on Quantum Confinement of Carriers        | 180        |
| 7.4       | Heterostructure: Quantum Wires                                            | 190        |
| 7.5       | Heterostructures: Devices Based on Strained Layers                        | 190        |
|           | <i>Solved Problems</i>                                                    | 191        |
|           | <i>Review Questions and Problems</i>                                      | 193        |

|                                                                                 |            |
|---------------------------------------------------------------------------------|------------|
| <b>8. Semiconductor Growth, Processing, and its Characterization</b>            | <b>194</b> |
| 8.1 Crystal Growth Techniques                                                   | 195        |
| 8.2 Epitaxial Growth                                                            | 197        |
| 8.3 Wafer Processing Techniques                                                 | 201        |
| 8.4 Optical Characterization Methods                                            | 202        |
| 8.5 Electrical Characterization Methods                                         | 208        |
| <i>Solved Problems</i>                                                          | 212        |
| <i>Review Questions and Problems</i>                                            | 214        |
| <b>PART II: Semiconductor Devices</b>                                           |            |
| <b>9. Junction Analysis</b>                                                     | <b>219</b> |
| 9.1 Fabrication of <i>p-n</i> Junctions                                         | 219        |
| 9.2 Equilibrium State of a <i>p-n</i> Junction                                  | 222        |
| 9.3 Current–Voltage Relationship in a <i>p-n</i> Junction—Qualitative Approach  | 231        |
| 9.4 Current–Voltage Relationship in a <i>p-n</i> Junction—Quantitative Approach | 233        |
| 9.5 Current–Voltage Relationship for a Real Diode                               | 239        |
| 9.6 Effect of Temperature on Diode Curves                                       | 241        |
| 9.7 High Injection Effects                                                      | 242        |
| 9.8 Pulse and Frequency Characteristics of a <i>p-n</i> Junction                | 242        |
| 9.9 Minority-carrier Storage                                                    | 245        |
| 9.10 Junction and Diffusion Capacitance                                         | 245        |
| 9.11 Frequency Characteristics of a <i>p-n</i> Junction                         | 248        |
| 9.12 Breakdown of a <i>p-n</i> Junction                                         | 250        |
| 9.13 Metal–Semiconductor Diode                                                  | 251        |
| 9.14 Metal–Semiconductor ( <i>p</i> -type) Contact: $\phi_m < \phi_s$           | 255        |
| 9.15 Metal–Semiconductor Ohmic Contacts                                         | 257        |
| 9.16 Current–Voltage Characteristics of a Schottky Diode                        | 259        |
| 9.17 Schottky Effect (Non-ideal Case)                                           | 260        |
| 9.18 Small Signal Equivalent Circuit of a Schottky Diode                        | 262        |
| 9.19 Effects of Interface States                                                | 262        |
| 9.20 Semiconductor Heterojunctions                                              | 264        |
| <i>Solved Problems</i>                                                          | 270        |
| <i>Review Questions and Problems</i>                                            | 278        |
| <b>10. Bipolar Junction Transistors</b>                                         | <b>283</b> |
| 10.1 BJT Structure and its Basic Operational Principle                          | 284        |
| 10.2 Transistor Configuration                                                   | 285        |
| 10.3 Modes of Operation                                                         | 287        |
| 10.4 BJT Characteristics                                                        | 287        |
| 10.5 Calculation of Terminal Currents                                           | 291        |
| 10.6 Transistor Model                                                           | 295        |
| 10.7 Non-ideal Effects                                                          | 297        |
| 10.8 Hetero-bipolar Junction Transistor                                         | 301        |

|            |                                                                             |            |
|------------|-----------------------------------------------------------------------------|------------|
| 10.9       | Major Applications of BJTs                                                  | 302        |
| 10.10      | Breakdown in a BJT                                                          | 308        |
| 10.11      | Small-signal Equivalent Circuit of a BJT                                    | 308        |
| 10.12      | High-frequency Performance of a BJT                                         | 309        |
|            | <i>Solved Problems</i>                                                      | 310        |
|            | <i>Review Questions and Problems</i>                                        | 313        |
| <b>11.</b> | <b>Junction Field Effect Transistor</b>                                     | <b>315</b> |
| 11.1       | Basic JFET Structure                                                        | 316        |
| 11.2       | Operation of a JFET                                                         | 317        |
| 11.3       | Comparison Between an <i>n</i> p <i>n</i> BJT and an <i>n</i> -channel JFET | 320        |
| 11.4       | FET Configurations and <i>V</i> - <i>I</i> Curves                           | 320        |
| 11.5       | Effect of Temperature on a JFET                                             | 321        |
|            | <i>Solved Problems</i>                                                      | 323        |
|            | <i>Review Questions and Problems</i>                                        | 326        |
| <b>12.</b> | <b>Metal–Semiconductor Field Effect Transistor</b>                          | <b>328</b> |
| 12.1       | Device Structure                                                            | 329        |
| 12.2       | Principle of Operation                                                      | 329        |
| 12.3       | Current–Voltage Characteristics                                             | 334        |
| 12.4       | Modes of Operation                                                          | 339        |
| 12.5       | Velocity Saturation in the MESFET                                           | 343        |
| 12.6       | Small signal Equivalent Circuit                                             | 345        |
| 12.7       | High-frequency Performance of the MESFET                                    | 347        |
| 12.8       | Applications                                                                | 348        |
|            | <i>Solved Problems</i>                                                      | 349        |
|            | <i>Review Questions and Problems</i>                                        | 353        |
| <b>13.</b> | <b>High-electron-mobility Transistors</b>                                   | <b>355</b> |
| 13.1       | Physics of Modulation Doping                                                | 356        |
| 13.2       | Physical Structure of a HEMT: Design Aspects                                | 358        |
| 13.3       | Charge–Voltage Relation: Bias-dependent Operation                           | 361        |
| 13.4       | Current–Voltage Characteristics                                             | 366        |
| 13.5       | Cut-off Frequency                                                           | 368        |
| 13.6       | Pseudomorphic HEMT (P-HEMT)                                                 | 368        |
| 13.7       | Applications                                                                | 369        |
|            | <i>Solved Problems</i>                                                      | 369        |
|            | <i>Review Questions and Problems</i>                                        | 372        |
| <b>14.</b> | <b>Metal Oxide Semiconductor Field Effect Transistor</b>                    | <b>373</b> |
| 14.1       | Physics of Surface States                                                   | 374        |
| 14.3       | Band Bending and the Effect of Bias                                         | 378        |
| 14.4       | Capacitance–Voltage Characteristics of the MOS Capacitor                    | 387        |
| 14.5       | Non-ideal MOS Capacitor                                                     | 391        |
| 14.6       | Metal Oxide Semiconductor Field Effect Transistor                           | 396        |
| 14.7       | Types of MOSFETs                                                            | 403        |
| 14.8       | A Practical MOSFET and Related Issues                                       | 407        |

|                                                          |                                                                   |            |
|----------------------------------------------------------|-------------------------------------------------------------------|------------|
| 14.9                                                     | The Small Signal Equivalent Circuit                               | 410        |
| 14.10                                                    | MOSFETs in Digital Integrated Circuits                            | 411        |
| 14.11                                                    | Applications in Electronics                                       | 415        |
|                                                          | <i>Solved Problems</i>                                            | 416        |
|                                                          | <i>Review Questions and Problems</i>                              | 424        |
| <b>15.</b>                                               | <b>Optoelectronic Devices</b>                                     | <b>427</b> |
| 15.1                                                     | Light-emitting Diode                                              | 428        |
| 15.2                                                     | Lasers                                                            | 438        |
| 15.3                                                     | Photodetectors                                                    | 446        |
| 15.4                                                     | Photovoltaic Effect and Solar Cells                               | 453        |
| 15.5                                                     | Photomultiplier                                                   | 455        |
|                                                          | <i>Solved Problems</i>                                            | 457        |
|                                                          | <i>Review Questions and Problems</i>                              | 461        |
| <b>16.</b>                                               | <b>Microwave Devices</b>                                          | <b>464</b> |
| 16.1                                                     | Tunnel Diode                                                      | 465        |
| 16.2                                                     | Gunn Diode                                                        | 466        |
| 16.3                                                     | Impact-ionization-avalanche Transit-time Diode                    | 470        |
| 16.4                                                     | Barrier-injection Transit-time Diode                              | 473        |
| 16.5                                                     | Trapped-plasma Avalanche-triggered Transit Diode                  | 476        |
| <b>17.</b>                                               | <b>Power Electronic Devices</b>                                   | <b>478</b> |
| 17.1                                                     | Four-layer Shockley Diode                                         | 479        |
| 17.2                                                     | Silicon-controlled Rectifier                                      | 484        |
| 17.3                                                     | DIAC                                                              | 491        |
| 17.4                                                     | TRIAC                                                             | 492        |
| 17.5                                                     | Unijunction Transistor                                            | 495        |
| 17.6                                                     | Gate Turn-off Thyristor                                           | 497        |
| 17.7                                                     | Frequency Limitations of SCRs and High-frequency Devices          | 499        |
| 17.8                                                     | Insulated Gate Bipolar Transistor                                 | 500        |
| 17.9                                                     | Power MOSFET                                                      | 503        |
| 17.10                                                    | Comparative Study of the Power MOSFET, IGBT, and Power Transistor | 505        |
| 17.11                                                    | Applications                                                      | 506        |
| <b>Appendix A: Frequently Used Quantities</b>            |                                                                   | <b>508</b> |
| <b>Appendix B: Properties of Some Selected Materials</b> |                                                                   | <b>509</b> |
| B.1                                                      | Silicon (Si)                                                      | 509        |
| B.2                                                      | Germanium (Ge)                                                    | 511        |
| B.3                                                      | Diamond (C)                                                       | 513        |
| B.4                                                      | Gallium Arsenide (GaAs)                                           | 515        |
| B.5                                                      | Gallium Phosphide (GaP)                                           | 518        |
| B.6                                                      | Indium Arsenide (InAs)                                            | 520        |
| B.7                                                      | Indium Phosphide (InP)                                            | 522        |

|                                                       |            |
|-------------------------------------------------------|------------|
| <b>Appendix C: Quantum Mechanics: Basic Formalism</b> | <b>524</b> |
| <b>Appendix D: Fermi-Dirac Statistics</b>             | <b>526</b> |
| <b>Appendix E: Density of States Function</b>         | <b>530</b> |
| E.1 Free Electrons in One-dimensional Space           | 530        |
| E.2 Free Electrons in Two-dimensional Space           | 532        |
| E.3 Free Electrons in Three-dimensional Space         | 533        |
| E.4 Quasi-free Electrons in a Periodic Crystal        | 534        |
| E.5 Density-of-states Effective Mass                  | 534        |
| <b>Bibliography</b>                                   | <b>538</b> |
| <b>Index</b>                                          | <b>543</b> |