
CONTENTS

Preface	xiii
Notation	xv

1	INTRODUCTION	1
1.1	Review of units and dimensions	1
1.1.1	Units	1
1.1.2	Fundamental dimensions	3
1.1.2.1	Mass and weight	3
1.1.2.2	Temperature	4
1.1.2.3	Mole	5
1.1.3	Derived dimensional quantities	5
1.1.3.1	Pressure	6
1.1.3.2	Volume	7
1.1.3.3	Equations of state	8
1.2	Dimensional equation	8
1.3	Tips for solving engineering problems	9
1.4	Conservation of mass	11
1.4.1	Law of conservation	11
1.4.2	Chemical reactions	13
1.4.3	Material balances	15
2	A REVIEW OF THERMODYNAMIC CONCEPTS	23
2.1	The first law of thermodynamics	23
2.1.1	Closed systems	24
2.1.2	Steady flow processes	24
2.2	The second law of thermodynamics	26
2.2.1	Reversible processes	26

2.3	Properties	28
2.3.1	Heat capacity	28
2.3.2	Calculating the change in entropy	29
2.3.2.1	Entropy change of an ideal gas	29
2.3.3	The Gibbs and Helmholtz free energy	31
2.3.3.1	Gibbs free energy	31
2.3.3.2	Helmholtz free energy	32
2.4	The fundamental property relations	32
2.4.1	Exact differentials	33
2.5	Single phase open systems	35
2.5.1	Partial molar properties	35
2.5.1.1	Binary systems	37
2.5.1.2	Property changes of mixing	37
2.5.1.3	Ideal gas	38
2.5.1.4	Gibbs free energy of an ideal gas mixture	40
2.5.2	Pure component fugacity	41
2.5.2.1	Calculating the pure component fugacity	41
2.5.3	Fugacity of a component in a mixture	44
2.5.4	The ideal solution	45
2.6	Phase equilibrium	47
2.6.1	Pure component phase equilibrium	48
2.6.1.1	Fugacity of a pure component as a compressed liquid	51
2.6.2	Excess properties	51
2.6.3	Phase equilibrium in mixtures	55
2.6.3.1	Solubility of a solid in a liquid solvent	55
2.6.3.2	Depression of the freezing point of a solvent by a solute	60
2.6.3.3	Equilibrium between a solid and a gas phase	62
2.6.3.4	Solubility of a gas in a liquid	63
2.6.3.5	Osmotic pressure	66
2.6.3.6	Distribution of a solute between two liquid phases	69
2.6.3.7	Vapor–liquid equilibrium	75
2.6.3.8	Flammability limits	79
2.6.3.9	Thermodynamics of surfaces	82
3	PHYSICAL PROPERTIES OF THE BODY FLUIDS AND THE CELL MEMBRANE	93
3.1	Body fluids	93
3.2	Fluid compositions	94
3.3	Capillary plasma protein retention	95
3.4	Osmotic pressure	97
3.4.1	Osmolarity	97
3.4.2	Calculating the osmotic pressure	98
3.4.3	Other factors that may affect the osmotic pressure	99
3.5	Formation of the interstitial fluid	99
3.6	Net capillary filtration rate	101
3.7	Lymphatic system	103
3.8	Solute transport across the capillary endothelium	103

3.9	The cell membrane	105
3.10	Ion pumps	111
4	THE PHYSICAL AND FLOW PROPERTIES OF BLOOD AND OTHER FLUIDS	115
4.1	Physical properties of blood	115
4.2	Cellular components	115
4.3	Rheology	117
4.4	Relationship between shear stress and shear rate	120
4.5	The Hagan–Poiseuille equation	122
4.6	Other useful flow relationships	123
4.7	<u>Rheology of blood</u> <i>Rheologia humi</i>	124
4.8	The Casson equation	125
4.9	Using the Casson equation	126
4.10	The velocity profile for tube flow of a Casson fluid	128
4.11	Tube flow of blood at low shear rates	129
4.12	The effect of the diameter at high shear rates	129
4.13	Marginal zone theory	132
4.14	Using the marginal zone theory	134
4.15	Boundary layer theory	137
4.15.1	The flow near a wall that is set in motion	137
4.15.2	Laminar flow of a fluid along a flat plate	142
4.16	Generalized mechanical energy balance equation	146
4.17	Capillary rise and capillary action	149
4.17.1	Capillary rise	150
4.17.2	Dynamics of capillary action	151
5	SOLUTE TRANSPORT IN BIOLOGICAL SYSTEMS	159
5.1	Description of solute transport in biological systems	159
5.2	Capillary properties	159
5.3	Capillary flowrates	160
5.4	Solute diffusion	161
5.4.1	Fick's first and second laws	161
5.4.2	Mass transfer in laminar boundary layer flow over a flat plate	164
5.4.3	Mass transfer from the walls of a tube containing a fluid in laminar flow <i>precept for laminar</i>	169
5.4.4	Mass transfer coefficient correlations	173
5.4.5	Determining the diffusivity	175
5.5	Solute transport by capillary filtration	176
5.6	Solute diffusion within heterogeneous media	182
5.6.1	Diffusion of a solute from a polymeric material	185
5.6.1.1	A solution valid for short contact times	188
5.6.2	Diffusion in blood and tissue	189
5.7	Solute permeability	192
5.8	The irreversible thermodynamics of membrane transport	193
5.8.1	Finding L_p , P_m , and σ	196

5.9	5.8.2 Multicomponent membrane transport	197
5.9	Transport of solutes across the capillary wall	198
5.10	Transport of solute between a capillary and the surrounding tissue space	203
5.10.1	The Krogh tissue cylinder	203
5.10.2	A model of the Krogh tissue cylinder	204
5.10.2.1	A comparison of convection and diffusion effects	210
5.10.2.2	The Renkin–Crone equation	211
5.10.2.3	Determining the value of $P_m S$	211
5.10.3	Solute transport in vascular beds	213
6	OXYGEN TRANSPORT IN BIOLOGICAL SYSTEMS	223
6.1	The diffusion of oxygen in multicellular systems	223
6.2	Hemoglobin	224
6.3	The oxygen-hemoglobin dissociation curve	225
6.4	Oxygen levels in blood	225
6.5	The Hill equation	227
6.6	Other factors that can affect the oxygen dissociation curve	228
6.7	Tissue oxygenation	229
6.8	Oxygen transport in a bioartificial organ	233
6.9	Steady state oxygen transport in a perfusion bioreactor	237
6.10	Oxygen transport in the Krogh tissue cylinder	240
6.11	An approximate solution for oxygen transport in the Krogh tissue cylinder	244
6.12	Artificial blood	248
7	PHARMACOKINETIC ANALYSIS <i>farmakokinetika</i>	255
7.1	Terminology	255
7.2	Entry routes for drugs	255
7.3	Modeling approaches	257
7.4	Factors that affect drug distribution	258
7.4.1	Drug distribution volumes	258
7.4.2	Drug metabolism	262
7.4.3	Renal excretion of the drug	263
7.5	Drug clearance	265
7.5.1	Renal clearance	265
7.5.2	Plasma clearance	266
7.5.3	Biological half-life	267
7.6	A model for intravenous injection of drug	267
7.7	Accumulation of drug in the urine	267
7.8	Constant infusion of drug	268
7.8.1	Application to controlled release of drugs by osmotic pumps	271
7.8.2	Application to the transdermal delivery of drugs	273
7.8.2.1	Predicting the permeability of the skin	275
7.9	First order drug absorption and elimination	276
7.10	Two compartment models	281
7.10.1	A two compartment model for an intravenous injection	282
7.10.2	A two compartment model for first order absorption	285

8	EXTRACORPOREAL DEVICES	293
8.1	Applications	293
8.2	Contacting schemes	294
8.3	Membrane solute transport	294
8.4	Estimating the mass transfer coefficients	297
8.5	Estimating the solute diffusivity in blood	298
8.6	Hemodialysis <i>Hemodialysis</i>	300
	8.6.1 Background	300
	8.6.2 Dialysate composition	301
	8.6.3 Role of ultrafiltration	302
	8.6.4 Clearance and dialysance	303
	8.6.5 Solute transfer	305
	8.6.6 A single compartment model of urea dialysis	308
	8.6.7 Peritoneal dialysis	308
8.7	Blood oxygenators	312
	8.7.1 Background	312
	8.7.2 Operating characteristics	312
	8.7.3 Types of oxygenators	313
	8.7.4 Analysis of a membrane oxygenator, oxygen transfer	315
	8.7.5 Analysis of a membrane oxygenator, carbon dioxide transfer	318
	8.7.6 Example calculations for membrane oxygenators	320
8.8	Immobilized enzyme reactors	322
	8.8.1 Background	322
	8.8.2 Examples of the medical applications of immobilized enzymes	322
	8.8.3 Enzyme reaction kinetics	324
	8.8.4 Reaction and diffusion in immobilized enzyme systems	327
	8.8.5 Solving the immobilized enzyme reaction–diffusion model	329
	8.8.6 Special case of a first order reaction	331
	8.8.7 Observed reaction rate	332
	8.8.8 External mass transfer resistance	332
	8.8.9 Reactor design equations	333
	8.8.9.1 Packed bed reactor	333
	8.8.9.2 Well-mixed reactor	334
8.9	Affinity adsorption	337
9	TISSUE ENGINEERING <i>Immunecell</i>	347
9.1	Introduction	347
9.2	Cell transplantation	348
9.3	The extracellular matrix (ECM)	350
	9.3.1 Glycosaminoglycans	351
	9.3.2 Collagens	352
	9.3.3 Elastin	352
	9.3.4 Fibronectin	352
	9.3.5 Basement membrane	353
9.4	Cellular interactions	353
	9.4.1 Cadherins	354

9.4.2	Selectins	354
9.4.3	Cell adhesion molecules	355
9.4.4	Integrins	355
9.4.5	Cytokines and growth factors	356
9.5	Polymeric support structures	357
9.6	Initial response to an implant	362
9.7	Tissue ingrowth in porous polymeric structures	362
9.8	Capillary volume fractions	367
9.9	Measuring the blood flow within polymeric support structures	367
9.10	Measuring mass transfer rates	369
9.11	Pharmacokinetic modeling of inulin transport in a polymeric support structure	372
9.12	Cell transplantation into polymeric support structures	377
10	BIOARTIFICIAL ORGANS	381
10.1	Background	381
10.2	Some immunology	382
10.2.1	B lymphocytes <i>precursor</i>	382
10.2.2	Antibodies <i>surface</i>	383
10.2.3	T lymphocytes	385
10.2.4	Interaction between APCs, B cells, and T cells	386
10.2.5	The immune system and transplanted cells	388
10.3	Immunoisolation	389
10.4	Permeability of immunoisolation membranes	392
10.5	Membrane Sherwood number	394
10.6	Examples of bioartificial organs	395
10.6.1	The bioartificial pancreas	396
10.6.1.1	Bioartificial pancreas approaches	397
10.6.1.2	Intravascular devices	398
10.6.1.3	Microencapsulation	401
10.6.1.4	Macroencapsulation	403
10.6.1.5	Organoid	405
10.6.2	Number of islets needed	406
10.6.3	Islet insulin release model	406
10.6.4	Pharmacokinetic modeling of glucose and insulin interactions	409
10.6.5	Using the pharmacokinetic model to evaluate the performance of a bioartificial pancreas	413
10.7	The bioartificial liver	416
10.7.1	Artificial liver systems	417
10.7.2	Bioartificial livers	418
10.7.3	Three extracorporeal bioartificial livers	419
10.8	The bioartificial kidney	423
10.8.1	Two configurations for a bioartificial kidney	425
	References	429
	Index	441