

# Contents

Preface xvii

## Chapter 1

### INTRODUCTION AND BASIC CONCEPTS | 1

#### 1–1 Thermodynamics and Energy 2

Application Areas of Thermodynamics 3

#### 1–2 Importance of Dimensions and Units 3

Some SI and English Units 6

Dimensional Homogeneity 8

Unity Conversion Ratios 9

#### 1–3 Systems and Control Volumes 10

#### 1–4 Properties of a System 12

Continuum 12

#### 1–5 Density and Specific Gravity 13

#### 1–6 State and Equilibrium 14

The State Postulate 14

#### 1–7 Processes and Cycles 15

The Steady-Flow Process 16

#### 1–8 Temperature and the Zeroth Law of Thermodynamics 17

Temperature Scales 17

The International Temperature Scale of 1990 (ITS-90) 20

#### 1–9 Pressure 21

Variation of Pressure with Depth 23

#### 1–10 The Manometer 26

Other Pressure Measurement Devices 29

#### 1–11 The Barometer and Atmospheric Pressure 29

#### 1–12 Problem-Solving Technique 33

Step 1: Problem Statement 33

Step 2: Schematic 33

Step 3: Assumptions and Approximations 34

Step 4: Physical Laws 34

Step 5: Properties 34

Step 6: Calculations 34

Step 7: Reasoning, Verification, and Discussion 34

Engineering Software Packages 35

Engineering Equation Solver (EES) 36

A Remark on Significant Digits 38

Summary 39

References and Suggested Readings 39

Problems 40

## Chapter 2

### ENERGY, ENERGY TRANSFER, AND GENERAL ENERGY ANALYSIS | 51

#### 2–1 Introduction 52

#### 2–2 Forms of Energy 53

Some Physical Insight to Internal Energy 55

More on Nuclear Energy 56

Mechanical Energy 58

#### 2–3 Energy Transfer by Heat 60

Historical Background on Heat 61

#### 2–4 Energy Transfer by Work 62

Electrical Work 65

#### 2–5 Mechanical Forms of Work 66

Shaft Work 66

Spring Work 67

Work Done on Elastic Solid Bars 67

Work Associated with the Stretching of a Liquid Film 68

Work Done to Raise or to Accelerate a Body 68

Nonmechanical Forms of Work 69

#### 2–6 The First Law of Thermodynamics 70

Energy Balance 71

Energy Change of a System,  $\Delta E_{\text{system}}$  72

Mechanisms of Energy Transfer,  $E_{\text{in}}$  and  $E_{\text{out}}$  73

#### 2–7 Energy Conversion Efficiencies 78

Efficiencies of Mechanical and Electrical Devices 82

#### 2–8 Energy and Environment 86

Ozone and Smog 87

Acid Rain 88

The Greenhouse Effect: Global Warming and Climate Change 89

#### Topic of Special Interest:

#### Mechanisms of Heat Transfer 92

Summary 96

References and Suggested Readings 97

Problems 98

**Chapter 3****PROPERTIES OF PURE SUBSTANCES | 111**

3–1 Pure Substance 112  
 3–2 Phases of a Pure Substance 112  
 3–3 Phase-Change Processes of Pure Substances 113  
     Compressed Liquid and Saturated Liquid 114  
     Saturated Vapor and Superheated Vapor 114  
     Saturation Temperature and Saturation Pressure 115  
     Some Consequences of  $T_{\text{sat}}$  and  $P_{\text{sat}}$  Dependence 117

3–4 Property Diagrams for Phase-Change Processes 118  
     1 The  $T$ - $v$  Diagram 118  
     2 The  $P$ - $v$  Diagram 120  
     Extending the Diagrams to Include the Solid Phase 121  
     3 The  $P$ - $T$  Diagram 124  
     The  $P$ - $v$ - $T$  Surface 125

3–5 Property Tables 126  
     Enthalpy—A Combination Property 126  
     1a Saturated Liquid and Saturated Vapor States 127  
     1b Saturated Liquid–Vapor Mixture 129  
     2 Superheated Vapor 132  
     3 Compressed Liquid 133  
     Reference State and Reference Values 135

3–6 The Ideal-Gas Equation of State 137  
     Is Water Vapor an Ideal Gas? 139

3–7 Compressibility Factor—A Measure of Deviation from Ideal-Gas Behavior 139

3–8 Other Equations of State 144  
     Van der Waals Equation of State 144  
     Beattie–Bridgeman Equation of State 145  
     Benedict–Webb–Rubin Equation of State 145  
     Virial Equation of State 145

**Topic of Special Interest: Vapor Pressure and Phase Equilibrium 149**  
     Summary 153  
     References and Suggested Readings 154  
     Problems 154

**Chapter 4****ENERGY ANALYSIS OF CLOSED SYSTEMS | 165**

4–1 Moving Boundary Work 166  
     Polytropic Process 171

4–2 Energy Balance for Closed Systems 173

4–3 Specific Heats 178

4–4 Internal Energy, Enthalpy, and Specific Heats of Ideal Gases 180  
     Specific Heat Relations of Ideal Gases 182

4–5 Internal Energy, Enthalpy, and Specific Heats of Solids and Liquids 189  
     Internal Energy Changes 189  
     Enthalpy Changes 189

**Topic of Special Interest: Thermodynamic Aspects of Biological Systems 193**  
     Summary 200  
     References and Suggested Readings 201  
     Problems 201

**Chapter 5****MASS AND ENERGY ANALYSIS OF CONTROL VOLUMES | 221**

5–1 Conservation of Mass 222  
     Mass and Volume Flow Rates 222  
     Conservation of Mass Principle 224  
     Mass Balance for Steady-Flow Processes 225  
     Special Case: Incompressible Flow 226

5–2 Flow Work and the Energy of a Flowing Fluid 228  
     Total Energy of a Flowing Fluid 229  
     Energy Transport by Mass 230

5–3 Energy Analysis of Steady-Flow Systems 232

5–4 Some Steady-Flow Engineering Devices 235  
     1 Nozzles and Diffusers 235  
     2 Turbines and Compressors 238  
     3 Throttling Valves 241  
     4a Mixing Chambers 242  
     4b Heat Exchangers 244  
     5 Pipe and Duct Flow 246

5–5 Energy Analysis of Unsteady-Flow Processes 248

**Topic of Special Interest: General Energy Equation 254**  
     Summary 257  
     References and Suggested Readings 258  
     Problems 258

**Chapter 6****THE SECOND LAW OF THERMODYNAMICS | 283**

6–1 Introduction to the Second Law 284

6–2 Thermal Energy Reservoirs 285

|      |                                                                  |                                                                                                                     |
|------|------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|
| 6-3  | Heat Engines 286                                                 | Isentropic Processes of Ideal Gases 364                                                                             |
|      | Thermal Efficiency 287                                           | Constant Specific Heats (Approximate Analysis) 364                                                                  |
|      | Can We Save $Q_{out}$ ? 289                                      | Variable Specific Heats (Exact Analysis) 365                                                                        |
|      | The Second Law of Thermodynamics:<br>Kelvin–Planck Statement 291 | Relative Pressure and Relative Specific Volume 365                                                                  |
| 6-4  | Refrigerators and Heat Pumps 291                                 | 7-10 Reversible Steady-Flow Work 368                                                                                |
|      | Coefficient of Performance 292                                   | Proof that Steady-Flow Devices Deliver<br>the Most and Consume the Least Work<br>when the Process Is Reversible 371 |
|      | Heat Pumps 293                                                   |                                                                                                                     |
|      | The Second Law of Thermodynamics:<br>Clausius Statement 296      |                                                                                                                     |
|      | Equivalence of the Two Statements 296                            |                                                                                                                     |
| 6-5  | Perpetual-Motion Machines 297                                    | 7-11 Minimizing the Compressor Work 372                                                                             |
| 6-6  | Reversible and Irreversible Processes 300                        | Multistage Compression with Intercooling 373                                                                        |
|      | Irreversibilities 301                                            |                                                                                                                     |
|      | Internally and Externally Reversible Processes 2302              |                                                                                                                     |
| 6-7  | The Carnot Cycle 303                                             | 7-12 Isentropic Efficiencies of Steady-Flow<br>Devices 376                                                          |
|      | The Reversed Carnot Cycle 305                                    | Isentropic Efficiency of Turbines 377                                                                               |
| 6-8  | The Carnot Principles 305                                        | Isentropic Efficiencies of Compressors and Pumps 379                                                                |
| 6-9  | The Thermodynamic Temperature Scale 307                          | Isentropic Efficiency of Nozzles 381                                                                                |
| 6-10 | The Carnot Heat Engine 308                                       | 7-13 Entropy Balance 383                                                                                            |
|      | The Quality of Energy 311                                        | Entropy Change of a System, $\Delta S_{system}$ 384                                                                 |
|      | Quantity versus Quality in Daily Life 312                        | Mechanisms of Entropy Transfer, $S_{in}$ and $S_{out}$ 384                                                          |
| 6-11 | The Carnot Refrigerator and Heat Pump 313                        | 1 Heat Transfer 384                                                                                                 |
|      | <b>Topic of Special Interest: Household Refrigerators 315</b>    | 2 Mass Flow 385                                                                                                     |
|      | Summary 319                                                      | Entropy Generation, $S_{gen}$ 386                                                                                   |
|      | References and Suggested Readings 320                            | Closed Systems 387                                                                                                  |
|      | Problems 320                                                     | Control Volumes 387                                                                                                 |
|      |                                                                  | Entropy Generation Associated with a Heat Transfer<br>Process 395                                                   |
|      |                                                                  | <b>Topic of Special Interest: Reducing the Cost<br/>of Compressed Air 397</b>                                       |
|      |                                                                  | Summary 406                                                                                                         |
|      |                                                                  | References and Suggested Readings 407                                                                               |
|      |                                                                  | Problems 408                                                                                                        |

## Chapter 7

### ENTROPY | 337

|     |                                                                                 |
|-----|---------------------------------------------------------------------------------|
| 7-1 | Entropy 338                                                                     |
|     | A Special Case: Internally Reversible Isothermal Heat<br>Transfer Processes 340 |
| 7-2 | The Increase of Entropy Principle 341                                           |
|     | Some Remarks about Entropy 343                                                  |
| 7-3 | Entropy Change of Pure Substances 345                                           |
| 7-4 | Isentropic Processes 349                                                        |
| 7-5 | Property Diagrams Involving Entropy 350                                         |
| 7-6 | What Is Entropy? 352                                                            |
|     | Entropy and Entropy Generation in Daily Life 354                                |
| 7-7 | The $T ds$ Relations 356                                                        |
| 7-8 | Entropy Change of Liquids and Solids 357                                        |
| 7-9 | The Entropy Change of Ideal Gases 360                                           |
|     | Constant Specific Heats (Approximate Analysis) 361                              |
|     | Variable Specific Heats (Exact Analysis) 362                                    |

## Chapter 8

### EXERGY: A MEASURE OF WORK POTENTIAL | 433

|     |                                                                             |
|-----|-----------------------------------------------------------------------------|
| 8-1 | Exergy: Work Potential of Energy 434                                        |
|     | Exergy (Work Potential) Associated with Kinetic<br>and Potential Energy 435 |
| 8-2 | Reversible Work and Irreversibility 437                                     |
| 8-3 | Second-Law Efficiency, $\eta_{II}$ 442                                      |
| 8-4 | Exergy Change of a System 444                                               |
|     | Exergy of a Fixed Mass: Nonflow (or Closed System)<br>Exergy 445            |
|     | Exergy of a Flow Stream: Flow (or Stream) Exergy 447                        |
| 8-5 | Exergy Transfer by Heat, Work, and Mass 450                                 |
|     | Exergy by Heat Transfer, $Q$ 450                                            |
|     | Exergy Transfer by Work, $W$ 452                                            |
|     | Exergy Transfer by Mass, $m$ 452                                            |
| 8-6 | The Decrease of Exergy Principle<br>and Exergy Destruction 453              |
|     | Exergy Destruction 454                                                      |

|                                                                        |                                                           |     |
|------------------------------------------------------------------------|-----------------------------------------------------------|-----|
| 8–7                                                                    | Exergy Balance: Closed Systems                            | 454 |
| 8–8                                                                    | Exergy Balance: Control Volumes                           | 467 |
|                                                                        | Exergy Balance for Steady-Flow Systems                    | 468 |
|                                                                        | Reversible Work, $W_{rev}$                                | 469 |
|                                                                        | Second-Law Efficiency of Steady-Flow Devices, $\eta_{II}$ | 469 |
| <b>Topic of Special Interest: Second-Law Aspects of Daily Life 475</b> |                                                           |     |
|                                                                        | Summary                                                   | 479 |
|                                                                        | References and Suggested Readings                         | 480 |
|                                                                        | Problems                                                  | 480 |

## Chapter 9

### GAS POWER CYCLES | 497

|                                                                                 |                                                                  |      |
|---------------------------------------------------------------------------------|------------------------------------------------------------------|------|
| 9–1                                                                             | Basic Considerations in the Analysis of Power Cycles             | 498  |
| 9–2                                                                             | The Carnot Cycle and Its Value in Engineering                    | 500  |
| 9–3                                                                             | Air-Standard Assumptions                                         | 502  |
| 9–4                                                                             | An Overview of Reciprocating Engines                             | 503  |
| 9–5                                                                             | Otto Cycle: The Ideal Cycle for Spark-Ignition Engines           | 504  |
| 9–6                                                                             | Diesel Cycle: The Ideal Cycle for Compression-Ignition Engines   | 5100 |
| 9–7                                                                             | Stirling and Ericsson Cycles                                     | 513  |
| 9–8                                                                             | Brayton Cycle: The Ideal Cycle for Gas-Turbine Engines           | 517  |
|                                                                                 | Development of Gas Turbines                                      | 520  |
|                                                                                 | Deviation of Actual Gas-Turbine Cycles from Idealized Ones       | 523  |
| 9–9                                                                             | The Brayton Cycle with Regeneration                              | 525  |
| 9–10                                                                            | The Brayton Cycle with Intercooling, Reheating, and Regeneration | 527  |
| 9–11                                                                            | Ideal Jet-Propulsion Cycles                                      | 531  |
|                                                                                 | Modifications to Turbojet Engines                                | 535  |
| 9–12                                                                            | Second-Law Analysis of Gas Power Cycles                          | 537  |
| <b>Topic of Special Interest: Saving Fuel and Money by Driving Sensibly 540</b> |                                                                  |      |
|                                                                                 | Summary                                                          | 547  |
|                                                                                 | References and Suggested Readings                                | 548  |
|                                                                                 | Problems                                                         | 549  |

## Chapter 10

### VAPOR AND COMBINED POWER CYCLES | 565

|                                                           |                                                                         |     |
|-----------------------------------------------------------|-------------------------------------------------------------------------|-----|
| 10–1                                                      | The Carnot Vapor Cycle                                                  | 566 |
| 10–2                                                      | Rankine Cycle: The Ideal Cycle for Vapor Power Cycles                   | 567 |
|                                                           | Energy Analysis of the Ideal Rankine Cycle                              | 568 |
| 10–3                                                      | Deviation of Actual Vapor Power Cycles from Idealized Ones              | 571 |
| 10–4                                                      | How Can We Increase the Efficiency of the Rankine Cycle?                | 574 |
|                                                           | Lowering the Condenser Pressure (Lowers $T_{low,avg}$ )                 | 574 |
|                                                           | Superheating the Steam to High Temperatures (Increases $T_{high,avg}$ ) | 575 |
|                                                           | Increasing the Boiler Pressure (Increases $T_{high,avg}$ )              | 575 |
| 10–5                                                      | The Ideal Reheat Rankine Cycle                                          | 578 |
| 10–6                                                      | The Ideal Regenerative Rankine Cycle                                    | 582 |
|                                                           | Open Feedwater Heaters                                                  | 582 |
|                                                           | Closed Feedwater Heaters                                                | 584 |
| 10–7                                                      | Second-Law Analysis of Vapor Power Cycles                               | 590 |
| 10–8                                                      | Cogeneration                                                            | 592 |
| 10–9                                                      | Combined Gas–Vapor Power Cycles                                         | 597 |
| <b>Topic of Special Interest: Binary Vapor Cycles 600</b> |                                                                         |     |
|                                                           | Summary                                                                 | 603 |
|                                                           | References and Suggested Readings                                       | 603 |
|                                                           | Problems                                                                | 604 |

## Chapter 11

### REFRIGERATION CYCLES | 623

|      |                                                    |     |
|------|----------------------------------------------------|-----|
| 11–1 | Refrigerators and Heat Pumps                       | 624 |
| 11–2 | The Reversed Carnot Cycle                          | 625 |
| 11–3 | The Ideal Vapor-Compression Refrigeration Cycle    | 626 |
| 11–4 | Actual Vapor-Compression Refrigeration Cycle       | 630 |
| 11–5 | Selecting the Right Refrigerant                    | 632 |
| 11–6 | Heat Pump Systems                                  | 634 |
| 11–7 | Innovative Vapor-Compression Refrigeration Systems | 636 |
|      | Cascade Refrigeration Systems                      | 636 |
|      | Multistage Compression Refrigeration Systems       | 639 |

|                                                                                             |            |                                                                                          |            |
|---------------------------------------------------------------------------------------------|------------|------------------------------------------------------------------------------------------|------------|
| Multipurpose Refrigeration Systems with a Single Compressor                                 | 641        | Ideal-Gas Mixtures                                                                       | 710        |
| Liquefaction of Gases                                                                       | 642        | Real-Gas Mixtures                                                                        | 713        |
| <b>11-8 Gas Refrigeration Cycles</b>                                                        | <b>644</b> | <b>Topic of Special Interest: Chemical Potential and the Separation Work of Mixtures</b> | <b>717</b> |
| <b>11-9 Absorption Refrigeration Systems</b>                                                | <b>647</b> | Summary                                                                                  | 728        |
| <b>Topic of Special Interest: Thermoelectric Power Generation and Refrigeration Systems</b> | <b>650</b> | References and Suggested Readings                                                        | 729        |
| Summary                                                                                     | 652        | Problems                                                                                 | 729        |
| References and Suggested Readings                                                           | 653        |                                                                                          |            |
| Problems                                                                                    | 653        |                                                                                          |            |

## Chapter 12

### **THERMODYNAMIC PROPERTY RELATIONS | 669**

|                                                                                                                             |            |
|-----------------------------------------------------------------------------------------------------------------------------|------------|
| <b>12-1 A Little Math—Partial Derivatives and Associated Relations</b>                                                      | <b>670</b> |
| Partial Differentials                                                                                                       | 671        |
| Partial Differential Relations                                                                                              | 673        |
| <b>12-2 The Maxwell Relations</b>                                                                                           | <b>674</b> |
| <b>12-3 The Clapeyron Equation</b>                                                                                          | <b>676</b> |
| <b>12-4 General Relations for <math>du</math>, <math>dh</math>, <math>ds</math>, <math>c_v</math>, and <math>c_p</math></b> | <b>679</b> |
| Internal Energy Changes                                                                                                     | 679        |
| Enthalpy Changes                                                                                                            | 680        |
| Entropy Changes                                                                                                             | 681        |
| Specific Heats $c_v$ and $c_p$                                                                                              | 682        |
| <b>12-5 The Joule-Thomson Coefficient</b>                                                                                   | <b>686</b> |
| <b>12-6 The <math>\Delta h</math>, <math>\Delta u</math>, and <math>\Delta s</math> of Real Gases</b>                       | <b>687</b> |
| Enthalpy Changes of Real Gases                                                                                              | 688        |
| Internal Energy Changes of Real Gases                                                                                       | 689        |
| Entropy Changes of Real Gases                                                                                               | 689        |
| Summary                                                                                                                     | 692        |
| References and Suggested Readings                                                                                           | 693        |
| Problems                                                                                                                    | 693        |

## Chapter 13

### **GAS MIXTURES | 701**

|                                                                                                         |            |
|---------------------------------------------------------------------------------------------------------|------------|
| <b>13-1 Composition of a Gas Mixture: Mass and Mole Fractions</b>                                       | <b>702</b> |
| <b>13-2 <math>P</math>-<math>v</math>-<math>T</math> Behavior of Gas Mixtures: Ideal and Real Gases</b> | <b>704</b> |
| Ideal-Gas Mixtures                                                                                      | 705        |
| Real-Gas Mixtures                                                                                       | 705        |
| <b>13-3 Properties of Gas Mixtures: Ideal and Real Gases</b>                                            | <b>709</b> |

Ideal-Gas Mixtures

Real-Gas Mixtures

### **Topic of Special Interest: Chemical Potential and the Separation Work of Mixtures**

Summary

References and Suggested Readings

Problems

## Chapter 14

### **GAS–VAPOR MIXTURES AND AIR-CONDITIONING | 737**

|                                                            |            |
|------------------------------------------------------------|------------|
| <b>14-1 Dry and Atmospheric Air</b>                        | <b>738</b> |
| <b>14-2 Specific and Relative Humidity of Air</b>          | <b>739</b> |
| <b>14-3 Dew-Point Temperature</b>                          | <b>741</b> |
| <b>14-4 Adiabatic Saturation and Wet-Bulb Temperatures</b> | <b>743</b> |
| <b>14-5 The Psychrometric Chart</b>                        | <b>746</b> |
| <b>14-6 Human Comfort and Air-Conditioning</b>             | <b>747</b> |
| <b>14-7 Air-Conditioning Processes</b>                     | <b>749</b> |
| Simple Heating and Cooling ( $\omega = \text{constant}$ )  | 750        |
| Heating with Humidification                                | 751        |
| Cooling with Dehumidification                              | 752        |
| Evaporative Cooling                                        | 754        |
| Adiabatic Mixing of Airstreams                             | 755        |
| Wet Cooling Towers                                         | 757        |
| Summary                                                    | 759        |
| References and Suggested Readings                          | 761        |
| Problems                                                   | 761        |

## Chapter 15

### **CHEMICAL REACTIONS | 773**

|                                                              |            |
|--------------------------------------------------------------|------------|
| <b>15-1 Fuels and Combustion</b>                             | <b>774</b> |
| <b>15-2 Theoretical and Actual Combustion Processes</b>      | <b>778</b> |
| <b>15-3 Enthalpy of Formation and Enthalpy of Combustion</b> | <b>784</b> |
| <b>15-4 First-Law Analysis of Reacting Systems</b>           | <b>787</b> |
| Steady-Flow Systems                                          | 787        |
| Closed Systems                                               | 789        |
| <b>15-5 Adiabatic Flame Temperature</b>                      | <b>792</b> |
| <b>15-6 Entropy Change of Reacting Systems</b>               | <b>795</b> |
| <b>15-7 Second-Law Analysis of Reacting Systems</b>          | <b>797</b> |

**Topic of Special Interest: Fuel Cells 802**

Summary 804  
 References and Suggested Readings 805  
 Problems 805

Summary 898  
 References and Suggested Readings 899  
 Problems 900

**Chapter 16****CHEMICAL AND PHASE EQUILIBRIUM | 817****16–1 Criterion for Chemical Equilibrium 818****16–2 The Equilibrium Constant for Ideal-Gas Mixtures 820****16–3 Some Remarks about the  $K_P$  of Ideal-Gas Mixtures 823****16–4 Chemical Equilibrium for Simultaneous Reactions 828****16–5 Variation of  $K_P$  with Temperature 830****16–6 Phase Equilibrium 832**

Phase Equilibrium for a Single-Component System 832  
 The Phase Rule 833  
 Phase Equilibrium for a Multicomponent System 834  
 Summary 839  
 References and Suggested Readings 840  
 Problems 841

**Chapter 17****COMPRESSIBLE FLOW | 849****17–1 Stagnation Properties 850****17–2 Speed of Sound and Mach Number 853****17–3 One-Dimensional Isentropic Flow 855**

Variation of Fluid Velocity with Flow Area 858  
 Property Relations for Isentropic Flow of Ideal Gases 860

**17–4 Isentropic Flow through Nozzles 862**

Converging Nozzles 862  
 Converging-Diverging Nozzles 867

**17–5 Shock Waves and Expansion Waves 871**

Normal Shocks 871  
 Oblique Shocks 878  
 Prandtl–Meyer Expansion Waves 882

**17–6 Duct Flow with Heat Transfer and Negligible Friction (Rayleigh Flow) 886**

Property Relations for Rayleigh Flow 892  
 Choked Rayleigh Flow 893

**17–7 Steam Nozzles 895****Appendix****PROPERTY TABLES AND CHARTS | 909**

**Table A–1** Molar mass, gas constant, and critical-point properties 910

**Table A–2** Ideal-gas specific heats of various common gases 911

**Table A–3** Properties of common liquids, solids, and foods 914

**Table A–4** Saturated water—Temperature table 916

**Table A–5** Saturated water—Pressure table 918

**Table A–6** Superheated water 920

**Table A–7** Compressed liquid water 924

**Table A–8** Saturated ice–water vapor 925

**Figure A–9** *T-s* diagram for water 926

**Figure A–10** Mollier diagram for water 927

**Table A–11** Saturated refrigerant-134a—Temperature table 928

**Table A–12** Saturated refrigerant-134a—Pressure table 930

**Table A–13** Superheated refrigerant-134a 931

**Figure A–14** *P-h* diagram for refrigerant-134a 933

**Figure A–15** Nelson–Obert generalized compressibility chart 934

**Table A–16** Properties of the atmosphere at high altitude 935

**Table A–17** Ideal-gas properties of air 936

**Table A–18** Ideal-gas properties of nitrogen,  $N_2$  938

**Table A–19** Ideal-gas properties of oxygen,  $O_2$  940

**Table A–20** Ideal-gas properties of carbon dioxide,  $CO_2$  942

**Table A–21** Ideal-gas properties of carbon monoxide,  $CO$  944

**Table A–22** Ideal-gas properties of hydrogen,  $H_2$  946

**Table A–23** Ideal-gas properties of water vapor,  $H_2O$  947

|                    |                                                                                         |     |                    |                                                                                        |     |
|--------------------|-----------------------------------------------------------------------------------------|-----|--------------------|----------------------------------------------------------------------------------------|-----|
| <b>Table A-24</b>  | Ideal-gas properties of monatomic oxygen, O                                             | 949 | <b>Figure A-30</b> | Generalized entropy departure chart                                                    | 954 |
| <b>Table A-25</b>  | Ideal-gas properties of hydroxyl, OH                                                    | 949 | <b>Figure A-31</b> | Psychrometric chart at 1 atm total pressure                                            | 955 |
| <b>Table A-26</b>  | Enthalpy of formation, Gibbs function of formation, and absolute entropy at 25°C, 1 atm | 950 | <b>Table A-32</b>  | One-dimensional isentropic compressible-flow functions for an ideal gas with $k = 1.4$ | 956 |
| <b>Table A-27</b>  | Properties of some common fuels and hydrocarbons                                        | 951 | <b>Table A-33</b>  | One-dimensional normal-shock functions for an ideal gas with $k = 1.4$                 | 957 |
| <b>Table A-28</b>  | Natural logarithms of the equilibrium constant $K_p$                                    | 952 | <b>Table A-34</b>  | Rayleigh flow functions for an ideal gas with $k = 1.4$                                | 958 |
| <b>Figure A-29</b> | Generalized enthalpy departure chart                                                    | 953 |                    | Index                                                                                  | 959 |