

Contents

Series Foreword	xiii
<i>Didier Dubois, Henri Prade</i>	
Preface	xv
<i>Roman Słowiński</i>	
Contributing Authors	xxi
Part I DECISION MAKING	
1	
Fuzzy Preference Modeling	3
<i>Patrice Perny, Marc Roubens</i>	
1.1 Preference Modeling and Decision Aid	3
1.2 Preference Structures	5
1.2.1 Basic Notions of Crisp Preference Modeling	5
1.2.2 Fuzzy Preference Modeling	8
1.2.3 Particular Solutions	13
1.2.4 Transitivity of (P, I, J)	15
1.3 Preference Modeling for MCDA	16
1.3.1 Multicriteria Decision Problems	16
1.3.2 The Use of Fuzzy Sets in the Definition of Criteria	17
1.3.3 Construction of Preference Relations from Criterion Values	19
1.3.4 The Construction of Preference Relations from Ill-known Consequences	22
References	27

2

Fuzzy Aggregation of Numerical Preferences

31

Michel Grabisch, Sergei A. Orlovski, Ronald R. Yager

2.1	The Aggregation Problem	31
2.2	Construction of One Comprehensive Criterion	34
2.2.1	Introduction	34
2.2.2	Properties for Aggregation	35
2.2.3	Common Aggregation Operators	37
2.2.4	Ordered Weighted Averaging (OWA) Operators	41
2.2.5	Fuzzy Integrals	42
2.2.6	Relation between Operators and Characterization of Operators	44
2.2.7	Behavioral Analysis of Operators	47
2.2.8	Identification of Operators	51
2.2.9	Aggregation of Fuzzy Numbers	55
2.3	Aggregation of Fuzzy Preferences in Problems of Multiattribute Choice	56
2.3.1	Introduction	56
2.3.2	Pareto Principle	56
2.3.3	Relation of Relative Importance	59
2.3.4	The Agreement-Discordance Principle for Aggregation	61
	References	64

3

The Use of Fuzzy Preference Models in Multiple Criteria Choice, Ranking and Sorting

69

Janos Fodor, Sergei A. Orlovski, Patrice Perny, Marc Roubens

3.1	Choice Based on a Fuzzy Binary Relation	69
3.2	Choice Methods Based on Scoring Functions	76
3.3	Choice Functions Based on Covering Relations	78
3.4	Choice Functions Based on Transitive Closures	83
3.5	Choice Functions Based on Kernels	86
3.6	Ranking and Sorting from Fuzzy Relations	91
3.6.1	Ranking Methods	91
3.6.2	Sorting Methods	95
	References	96

4		
Group Decision Making Under Fuzziness	103	
<i>Janusz Kacprzyk, Hannu Nurmi</i>		
4.1	Introduction	103
4.1.1	Group Decision Making, Social Choice and Consensus Reaching – Basic Issues and the Role of Fuzziness	104
4.1.2	Fuzzy Linguistic Quantifiers and the Ordered Weighted Averaging (OWA) Operators	108
4.2	Group Decision Making Under Fuzzy Preferences and a Fuzzy Majority	112
4.2.1	Direct Derivation of a Solution	113
4.2.2	Indirect Derivation of a Solution – the Consensus Winner	122
4.3	Degrees of Consensus under Fuzzy Preferences and a Fuzzy Majority	127
4.4	Concluding Remarks	131
	References	132
5		
Elements of Fuzzy Game Theory	137	
<i>Antoine Billot</i>		
5.1	Introduction: Rational Behavior and Games	137
5.2	Games and Fuzziness	139
5.2.1	General Statements about Boolean Game Theory	139
5.2.2	General Statements about Fuzzy Game Theory	141
5.3	Fuzzy Information and Fuzzy Coalitions	142
5.3.1	Fuzzy Information	142
5.3.2	Fuzzy Behavior	143
5.4	NonCooperative Fuzzy Game Theory	145
5.4.1	Fixed Points and Nash-Equilibrium	145
5.4.2	Prudent Behavior and Equilibria	154
5.5	Cooperative Fuzzy Game Theory	159
5.5.1	Fuzzy Structures with Boolean Preferences	160
5.5.2	Boolean Structures with Fuzzy Preferences	166
	References	173

Part II MATHEMATICAL PROGRAMMING**6****Fuzzy Linear Programming with Single or Multiple Objective Functions***Heinrich Rommelfanger, Roman Słowiński*

6.1	Introduction	179
6.2	Linear Programming with Soft Constraints	181
6.3	Modeling of Fuzzy Data	186
6.4	Aggregation of the Left-Hand Sides of Fuzzy Constraints	189
6.5	Inequality Relations	189
6.6	Maximizing Fuzzy Objectives	191
6.7	Extended Addition, based on Yager's T-norm T_p	197
6.8	Solution Process for Getting a Compromise Solution	199
6.9	Applications of Fuzzy Linear Programming	205
	References	207

7**Fuzzy Nonlinear Programming with Single or Multiple Objective Functions***Masatoshi Sakawa*

7.1	Nonlinear Programming with a Fuzzy Goal and Constraints	215
7.2	Multiobjective Nonlinear Programming with Fuzzy Goals	217
7.3	Interactive Fuzzy Multiobjective Approaches	225
7.4	Interactive Fuzzy Multiobjective Nonlinear Goal Programming	227
7.5	Interactive Fuzzy Multiobjective Nonlinear Programming	229
7.6	Multiobjective Nonlinear Programming with Fuzzy Parameters	233
7.7	Interactive Nonlinear Programming with Fuzzy Parameters	236
7.8	Interactive Fuzzy Nonlinear Programming with Fuzzy Parameters	240
	References	246

8**Discrete Fuzzy Optimization***Stefan Chanas, Dorota Kuchta*

8.1	Introduction	249
8.2	Fuzzy Optimization in Graphs and Networks	251
8.2.1	Max-Flow Problem	251
8.2.2	Min-Cost Flow Problem	253

8.2.3	The Shortest Route Problem	255
8.3	Fuzzy Transportation and Assignment Problem	258
8.3.1	Integer Transportation Problem with Fuzzy Coefficients in the Objective Function	258
8.3.2	Integer Transportation Problem with Fuzzy Demand and Supply Values and a Fuzzy Goal	259
8.3.3	Fuzzy Assignment Problem	262
8.4	Fuzzy Network Planning	264
8.4.1	A Generalization of the CPM Method – Chanas and Kamburowski Approach	264
8.4.2	Fuzzy PERT	266
8.5	Fuzzy Scheduling on Machines	267
8.5.1	The Fuzzy N-job M-machine Flow Shop Problem	268
8.5.2	The Fuzzy Open Shop Problem (with Fuzzy Due Dates)	270
8.5.3	The Fuzzy Identical Machines Maximum Lateness Problem	271
8.5.4	General Fuzzy Job Shop Problems	271
8.6	Other Selected Problems	273
8.6.1	Fuzzy Set Covering Problem	273
8.6.2	Fuzzy Multiple Choice Knapsack Problem	274
8.6.3	General Fuzzy 0-1 Linear Problems	275
	References	277

9**Fuzzy Dynamic Programming**

281

Augustine O. Esogbue, Janusz Kacprzyk

9.1	Introduction	281
9.2	Multistage Decision Making under Fuzziness	283
9.2.1	Multistage Decision Making under Fuzziness – Bellman and Zadeh's Approach	283
9.2.2	Essentials of Multistage Decision Making (Control) under Fuzziness – Bellman and Zadeh's Approach	285
9.3	Fuzzy Dynamic Programming for Multistage Decision Making with a Fixed and Specified Termination Time	287
9.3.1	The Case of a Deterministic Dynamic System	287
9.3.2	The Case of a Stochastic Dynamic System	288
9.3.3	The Case of a Fuzzy Dynamic System	290
9.4	Fuzzy Dynamic Programming for Multistage Decision Making with a Fuzzy Termination Time	291
9.4.1	The Case of a Deterministic Dynamic System	292
9.4.2	The Case of a Stochastic Dynamic System	293
9.4.3	Remarks on the Case of a Fuzzy Dynamic System	293

9.5 Multistage Decision Making with an Implicitly Specified Termination Time	294
9.6 Multistage Decision Making with an Infinite Termination Time	294
9.7 Stochastic Multistage Decision Making under Fuzzy Criteria	295
9.7.1 Fuzzy Criterion Sets and Fuzzy Dynamic Programming	295
9.7.2 Optimal Control Policy and Additional Studies in Fuzzy Criterion Dynamic Programming	300
9.8 Computational Complexity Analysis of Fuzzy Dynamic Programs	300
9.8.1 Computational Analysis of Kacprzyk's Model	300
9.8.2 Stein's Approach	301
9.8.3 Comparative Summary	301
9.9 Brief Review of Applications of Fuzzy Dynamic Programming	301
9.10 Concluding Remarks	303
References	304

Part III STATISTICS AND DATA ANALYSIS

10 Fuzzy Set-Theoretic Methods in Statistics	311
<i>Jörg Gebhardt, Maria Angeles Gil, Rudolf Kruse</i>	
10.1 Introduction	311
10.2 Fuzziness in Random Experiments	312
10.3 An Approach to Fuzzy-Valued Statistics with Fuzzy Experimental Data	315
10.3.1 Fuzzy Random Variables	316
10.3.2 Fuzzy Probability Theory	318
10.3.3 Fuzzy Statistics	320
10.3.4 The SOLD-System - An Implementation	321
10.4 An Approach to Real-Valued Statistics with Fuzzy Experimental Data	324
10.4.1 Point Estimation from Fuzzy Data. Maximum Likelihood Principle and an Operative Approximation	327
10.4.2 Testing Hypothesis with Fuzzy Data. Likelihood Ratio Test	333
10.5 Approaches to Modeling Fuzzy-Bayes Statistical Decision Making	335
10.5.1 An Approach to Modeling Statistical Decision Making with Fuzzy Data	335
10.5.2 An Approach to Modeling Statistical Decision Making with Fuzzy Utilities	337
10.6 Concluding Remarks	340
References	341

11	
Fuzzy Regression Analysis	349
<i>Phil Diamond, Hideo Tanaka</i>	
11.1 Introduction	349
11.1.1 Overview of Possibilistic Regression	352
11.1.2 Overview of Least Squares Methods	353
11.2 Possibilistic Regression	353
11.2.1 Interval Regression	354
11.2.2 Fuzzy Regression	360
11.2.3 Exponential Possibility Regression	362
11.3 Least Squares Regression	369
11.3.1 Celmins Model	369
11.3.2 Metric Distance	371
11.3.3 Körner's Method	377
11.3.4 Hukuhara Fitting	378
11.3.5 Fitting Several Fuzzy Variables	380
11.3.6 Random Fuzzy Variables	382
11.3.7 Kriging	383
11.4 Concluding Remarks	385
References	386

Part IV RELIABILITY, MAINTENANCE AND REPLACEMENT

12	
Reliability	391
<i>Etienne Kerre, Takehisa Onisawa, Bart Cappelle, Igor Gazdik</i>	
12.1 Introduction	391
12.2 Questions in Classical Reliability and their Possible Answers	393
12.3 Probabilistic Approach of System Reliability Analysis From Fuzzy Theory Point of View	397
12.3.1 Failure Probability and Error Probability	397
12.3.2 Dependence	398
12.3.3 Scenario about Sequence of System Failure	400
12.3.4 System Reliability Evaluation	400
12.3.5 Use of Natural Language	401
12.4 Fuzzy Set Theory Approach	402
12.4.1 Fuzzy Probability Approach	402
12.4.2 Fault Tree Analysis by Fuzzy Failure Probability	405
12.4.3 Non-Probabilistic Measure Approach	406

12.4.4 Fuzzy Fault Tree Analysis by Subjective Measure of Reliability	409
12.4.5 Dependence Analysis	411
12.4.6 Natural Language Expressions of the Analysis Results	413
12.4.7 Determination of the Parameters nH and nG	413
12.4.8 Determination of the parameter r_0	414
12.4.9 Mutual Agreement of the Analysis Results	414
12.5 Conclusions	415
References	416
13 Maintenance and Replacement Models under a Fuzzy Framework	421
<i>Augustine O. Esogbue, Warren E. Hearnes II</i>	
13.1 Economic Decision Analysis	421
13.2 Replacement Analysis	423
13.3 Fuzzy Concepts in Cash Flow Analysis	424
13.3.1 Nonprobabilistic Method in Cash Flow Analysis	425
13.3.2 Fuzzy Arithmetic and Interval Analysis	426
13.3.3 Some Sources of Uncertainty in Replacement Analysis	427
13.4 Economic Life of an Asset Model	428
13.5 Dynamic Programming Formulation of Economic Life of an Asset	432
13.6 The General Single Asset Replacement Problem	433
13.7 Inspection and Replacement Models	438
13.8 Maintenance Decisions	441
13.9 Summary	443
References	444
Index	449