

Contents

In memoriam	18
Scientific curriculum vitae	22
Supplement of publications within the years 2013-2015	41
List of Contributors	43
1. Multi-aspect design methodology for steel skeleton multi-storey buildings	51
1.1. Introduction	51
1.2. Optimal designing	53
1.3. ACE - Advanced Cost Estimator	53
1.3.1. General information	53
1.3.2. Price estimation	55
1.4. Optimal design of steel skeleton multi-storey buildings	57
1.4.1. Formulation of the optimization problem	57
1.4.2. Results of the analysis	60
1.4.3. The optimal result	62
1.4.4. The numerical verification	65
1.5. Concluding remarks	70
1.5.1. Cost as the main optimization criterion	70
1.5.2. Conclusions	71
1.6. References	72
2. On the tolerance modelling of periodic inhomogeneous media	74
2.1. Models and modelling of material media	74
2.2. Selected models of mechanics	76
2.3. Periodically inhomogeneous media	78
2.4. Model of multicomponent plates	79
2.5. An averaged model of periodic inhomogeneous plates	81
2.6. Free vibrations of uniperiodic inhomogeneous plates	84
2.7. Summary	88
2.8. References	89

3. Tolerance modelling of medium thickness functionally graded plates	90
3.1. Introduction	90
3.2. Modelling foundations	93
3.2.1. Preliminaries	93
3.2.2. Governing equations	93
3.3. Tolerance modelling	94
3.3.1. Basic concepts	94
3.3.2. Fundamental modelling assumptions	95
3.3.3. Modelling procedure	95
3.4. Governing equations	96
3.5. Example – vibrations of medium thickness functionally graded plate band	97
3.5.1. Preliminaries	97
3.5.2. Governing equations of vibrations	99
3.5.3. Approximate solutions to the governing equations	100
3.6. Final remarks	105
3.7. References	106
4. Application of structural topology optimisation for planetary carrier design	111
4.1. Goals	112
4.1.1. Input data	114
4.1.2. Manufacturing aspects of planet-carrier	115
4.2. Analysis method	115
4.2.1. Material properties	116
4.2.2. Topology optimization	117
4.2.3. Results of topology optimisation	118
4.2.4. Concept design based on topology optimization results	119
4.2.5. FEA models	120
4.2.6. Press-fit between planet axles and planet carrier	121
4.2.7. Solution	121
4.3. Results and discussion	122
4.4. Conclusions	126
4.5. References	127
5. Elastic-plastic stability of FML panel and columns of open and closed cross-section	128
5.1. Introduction	128
5.2. Method of solution	129

5.3. Some results of calculations	132
5.3.1. Cylindrical panel	133
5.3.2. Closed cross-sections	135
5.3.3. Open cross-sections	139
5.4. Conclusions	144
5.5. References	145
6. Crack propagation in thin-walled structures under cyclic variable loads. The numerical and experimental studies	147
6.1. Introduction	147
6.2. Structure fatigue	150
6.3. Experimental and numerical studies	162
6.3.1. A plate strip weakened by a crack	162
6.3.2. Numerical analysis	165
6.3.3. Stress pattern for a crack-weakened structure	168
6.3.4. Fatigue crack development in a plate subjected to shear	170
6.4. Summary	172
6.5. References	173
7. Deformation and buckling of axially compressed cylindrical shells with transversal cut in numerical and physical experiments	174
7.1. Introduction	174
7.2. Methodology and results of the experimental research	176
7.2.1. Experiment preparation	176
7.2.2. Quality of shells	177
7.2.3. Results of the experiment	178
7.3. Methodology and results of the numerical study	180
7.3.1. Numerical finite element modelling	181
7.3.2. Types of analyses and numerical procedure	183
7.3.3. Processing and presentation of numerical results	185
7.3.4. Analysis of numerical results, comparison with experimental data and discussion	185
7.3.5. Stress state around the cuts	188
7.4. Conclusions	190
7.5. References	191
8. Corner radius effect in the thin-walled columns of regular polygon cross-section on the local buckling and load carrying capacity	194

8.1. Introduction	195
8.2. The problem formulation	196
8.3. Column cross-section geometry description	196
8.4. Numerical model	200
8.5. Results of buckling stress computations	203
8.6. Conclusions	209
8.7. References	210
9. Local and global elastic buckling of I-beams under pure bending	212
9.1. Introduction	212
9.2. Buckling of the standard-universal I-beam (B-1)	213
9.2.1. Local buckling	213
9.2.2. Global buckling	215
9.3. Buckling of the non-standard I-beam with lipped flanges (B-2)	217
9.3.1. Local buckling	217
9.3.2. Global buckling	219
9.4. Buckling of non-standard I-beam with sandwich flanges	220
9.4.1. Local buckling	221
9.4.2. Global buckling	224
9.5. Conclusions	225
9.6. References	225
10. Forced oscillations of a viscoelastic Timoshenko beam with dampers and dynamic vibration absorbers	233
10.1. Introduction	233
10.2. Governing equations for viscoelastic Timoshenko beam loaded by a distributed load	235
10.3. Natural modes of elastic TB and conditions of their orthogonality	237
10.3.1. Natural modes of elastic TB	237
10.3.2. The case of elastic cantilever beam	239
10.3.3. Conditions of orthogonality	240
10.4. A series solution for steady-state forced oscillations of viscoelastic TB	241
10.4.1. General solution	241
10.4.2. Action of a concentrated harmonic force	244
10.4.3. Single-mode approximation	244
10.4.4. Qualitative comparison of undamped and damped beams	246

10.5. Viscoelastic Timoshenko beam with a damper, point mass and dynamical vibration absorber	247
10.5.1. Viscoelastic TB with a damper	247
10.5.2. Viscoelastic TB with a dynamic vibration absorber	249
10.5.3. Viscoelastic TB with point mass, damper and dynamic vibration absorber	251
10.6. Results of numerical analysis for a cantilever TB	251
10.6.1. Eigenmodes and eigenfrequencies	252
10.6.2. Shapes of forced oscillations of an elastic TB (without dampers and DVAs)	253
10.6.3. Forced oscillations of a viscoelastic TB (without dampers and DVAs)	255
10.6.4. TB with a concentrated mass	257
10.6.5. Viscoelastic TB with dynamical vibration absorber	258
10.7. Conclusion	262
10.8. References	263
 11. The modifications proposed to the buckling design recommendations of cold-formed column members of lipped channel section with perforations	264
11.1. Introduction	264
11.2. Numerical investigation	267
11.3. Experimental investigation	269
11.3.1. Different types of columns specimens tested	269
11.3.2. Fixed-fixed end fixture	271
11.3.3. Geometric imperfections	272
11.3.4. Material properties testing	273
11.4. Theoretical investigation	273
11.5. Comparisons between numerical, experimental and theoretical investigations	274
11.5.1. Deformation behaviour of the specimens	274
11.5.2. Numerical, experimental and theoretical results	275
11.6. Proposals for the Eurocode specification	277
11.7. Conclusion	278
11.8. Future work	280
11.9. References	280
 12. Tolerance modelling of stability of thin composite plates with dense system of beams	282
12.1. Introduction	282

12.2. Direct description	283
12.3. Modelling concept	285
12.4. Averaged model equations	287
12.5. Applications	289
12.5.1. Fluctuation shape function	290
12.5.2. Validation of proposed model	292
12.5.3. Influence of geometrical and material properties on stability of plates	293
12.6. Summary	296
12.7. References	297
 13. On constitutive relations in the resultant non-linear theory of shells	 298
13.1. Introduction	298
13.2. Some exact shell relations	299
13.3. Isotropic elastic shells undergoing small strains	301
13.4. Layered elastic shells with different play sequences	304
13.5. Elasto-plastic FGM shells	311
13.6. Conclusions	315
13.7. References	315
 14. Stability and vibration of imperfect structures	 319
14.1. Introduction	319
14.2. Dynamic Post-Bucklin Behaviour of Slender Web	320
14.2.1. Post-buckling behaviour of slender web - displacement model	320
14.2.2. Post-buckling behaviour of slender web loaded in compression - illustrative example	322
14.2.3. System of non-linear algebraic equations	323
14.2.4. Incremental formulation	324
14.2.5. The Hamilton's principle	326
14.2.6. Static behaviour	328
14.2.7. Incremental solution	329
14.2.8. Newton-Raphson iteration	329
14.2.9. Bifurcation point	330
14.2.10. Vibration of the structure	331
14.3. Stability and vibration	332
14.3.1. Vibration of simply supported column loaded in compression	332

14.3.2. Vibration of simply supported column loaded fixed supports	333
14.3.3. Initial displacement as the second mode of buckling	334
14.3.4. Experimental verification	336
14.4. Vibration and residual stresses	340
14.4.1. Vibration of simply supported column loaded in compression	340
14.5. Conclusion	341
14.6. References	343
15. Patch loading on steel girders	344
15.1. Outline of a patch loaded web panel	344
15.1.1. General view on a patch loaded plate	344
15.1.2. Studies on patch loaded plate	347
15.2. Collapse behaviour	348
15.2.1. Mechanism solution	348
15.2.2. Girders on launching shoe	351
15.2.3. Solution with the co-relation formula	354
15.3. Buckling coefficient of web panel on launching shoe	358
15.4. Effect of flange plate	362
15.5. References	364
16. Local buckling and initial post-buckling behaviour of channel member flange - analytical approach	367
16.1. Introduction	367
16.2. Total potential energy of member flange	368
16.3. Local buckling and initial post-buckling behaviour	370
16.4. Numerical examples	375
16.5. Conclusions	381
16.6. References	383
17. Stability of columns with respect to their loads and specific disorders of their structure	384
17.1. Columns and disorders of their structures	384
17.2. Loads of the columns	385
17.3. A conservative condition of the load resulting from the field theory	387
17.4. The course of the curve in the plane load - natural frequency	389

17.5. Modelling and analysis of slender structures under piezoelectric actuation	392
17.5.1. Introduction	392
17.5.2. Application of piezoceramic transducers for enhancing stability and dynamic control of structure	395
17.6. Stability of a column resting locally on a Winkler type elastic base at specific load	398
17.6.1. Potential energy of the system. Equations of displacement, boundary conditions	399
17.6.2. The results of numerical computations	400
17.7. References	404
18. Elasto-plastic behaviour and load-capacity of multi-layered plated structures	407
18.1. Introduction	407
18.2. Problem formulation	408
18.3. Review of applied methods of analysis	409
18.3.1. Analytical-numerical method	409
18.3.2. Finite element method	413
18.3.3. Plastic mechanism analysis	415
18.4. Selected numerical results	418
18.4.1. Plates with metallic or fibrous composite core	418
18.4.2. Plates with FML core	420
18.4.3. Plates with honeycomb core	421
18.5. Final remarks	427
18.6. References	427
19. Non-linear vibrations of a thin-walled composite column under periodically varied in time compression load	429
19.1. An approximate method of analytical solutions for non-linear vibrations around the principal parametric resonances	431
19.1.1. Principal parametric resonances for $\Omega \approx 2\Omega_{01}$	434
19.1.2. Principal parametric resonances for $\Omega \approx 2\Omega_{02}$	438
19.2. Exemplary calculations and numerical studies	439
19.3. References	444
20. Research and design of thin-walled steel structures by FEM. Part I- Stability of slender steel structures: A short review and guidance for numerical modelling	447

20.1. Introduction	447
20.2. Stability of slender steel structures. A short review	450
20.2.1. Basic assumptions for elastic theory of stability	450
20.2.2. Continuous and discrete models	452
20.2.3. Bifurcation and limitation of equilibrium	453
20.2.4. Post-buckling behaviour	457
20.3. Instability types	457
20.3.1. Structures undergoing instability by bifurcation	458
20.3.2. Structures undergoing instability by limitation	461
20.3.3. Dynamic instability	462
20.3.4. Interactive buckling. The phenomenon	464
20.3.5. Interaction classes and erosion of critical bifurcation load	466
20.4. Principles and general recommendations for numerically-based buckling analysis of thin-walled steel structures	469
20.4.1. Finite Element Methods (FEM) for analysis and design	469
20.4.2. Modelling of material properties and imperfections for numerical analysis	472
20.5. Conclusions	481
20.6. References	482