

Contents

Introduction	I-1
 ELASTIC-PLASTIC CRACK ANALYSIS	
Dynamic Growth of an Antiplane Shear Crack in a Rate-Sensitive Elastic-Plastic Material —L. B. FREUND AND A. S. DOUGLAS	I-5
Elastic Field Surrounding a Rapidly Tearing Crack —A. S. KOBAYASHI AND O. S. LEE	I-21
Elastic-Plastic Steady Crack Growth in Plane Stress —A. H. DEAN	I-39
A Finite-Element Study of the Asymptotic Near-Tip Fields for Mode I Plane-Strain Cracks Growing Stably in Elastic-Ideally Plastic Solids —T.-L. SHAM	I-52
Crack-Tip Stress and Deformation Fields in a Solid with a Vertex on Its Yield Surface —A. NEEDLEMAN AND V. TVERGAARD	I-80
The J_{ext}-Integral Based on the Concept of Effective Energy Release Rate —H. MIYAMOTO, K. KAGEYAMA, M. KIKUCHI, AND K. MACHIDA	I-116
A Criterion Based on Crack-Tip Energy Dissipation in Plane-Strain Crack Growth Under Large-Scale Yielding —M. SAKA, T. SHOJI, H. TAKAHASHI, AND H. ABE	I-130
Discontinuous Extension of Fracture in Elastic-Plastic Deformation Field —M. P. WNUK	I-159
Influence of Compressibility on the Elastic-Plastic Field of a Growing Crack —Y.-C. GAO	I-176
Material Resistance and Instability Beyond J-Controlled Crack Growth —H. A. ERNST	I-191
An Elastoplastic Finite-Element Investigation of Crack Initiation Under Mixed-Mode Static and Dynamic Loading —J. AHMAD, C. R. BARNES, AND M. F. KANNINEN	I-214

Elastic-Plastic Analysis of a Nozzle Corner Crack by the Finite-Element Method —W. BROCKS, H. H. ERBE, H. D. NOACK, AND H. VEITH	I-240
Elastic-Plastic Finite-Element Analysis for Two-Dimensional Crack Problems —P. D. HILTON AND L. N. GIFFORD	I-256
FULLY ELASTIC CRACK AND SURFACE FLAW ANALYSIS	
Bounds for Fully Plastic Crack Problems for Infinite Bodies —M. Y. HE AND J. W. HUTCHINSON	I-277
Penny-Shaped Crack in a Round Bar of Power-Law Hardening Material —M. Y. HE AND J. W. HUTCHINSON	I-291
Elastic-Plastic and Fully Plastic Analysis of Crack Initiation, Stable Growth, and Instability in Flawed Cylinders —V. KUMAR, M. D. GERMAN, AND C. F. SHIH	I-306
A Superposition Method for Nonlinear Crack Problems —G. YAGAWA AND T. AIZAWA	I-354
Consistency Checks for Power-Law Calibration Functions —D. M. PARKS, V. KUMAR, AND C. F. SHIH	I-370
Ductile Growth of Part-Through Surface Cracks: Experiment and Analysis —C. S. WHITE, R. O. RITCHIE, AND D. M. PARKS	I-384
Evaluation of J-Integral for Surface Cracks —M. SHIRATORI AND T. MIYOSHI	I-410
Effects of Thickness on J-Integral in Structures —M. SAKATA, S. AOKI, K. KISHIMOTO, M. KANZAWA, AND N. OGURE	I-425
J-Integral Analysis of Surface Cracks in Pipeline Steel Plates —R. B. KING, Y.-W. CHENG, D. T. READ, AND H. I. MCHENRY	I-444
Use of J-Integral Estimation Techniques to Determine Critical Fracture Toughness in Ductile Steels —G. GREEN AND L. MILES	I-458
Evaluation of Plate Specimens Containing Surface Flaws Using J-Integral Methods —W. G. REUTER, D. T. CHUNG, AND C. R. EIHOLZER	I-480

VISCOPLASTIC ANALYSIS AND CORRELATION	
Crack-Tip Stress Fields and Crack Growth Under Creep-Fatigue Conditions —H. RIEDEL	I-505
Stable Crack Extension Rates in Ductile Materials: Characterization by a Local Stress-Intensity Factor —E. W. HART	I-521
Cracks in Materials with Hyperbolic-Sine-Law Creep Behavior — J. L. BASSANI	I-532
Stress Concentrations Due to Sliding Grain Boundaries in Creeping Alloys —G. W. LAU, A. S. ARGON, AND F. A. McCLINTOCK	I-551
Steady-State Crack Growth in Elastic Power-Law Creeping Materials —C. Y. HUI	I-573
Effects of Creep Recovery and Hardening on the Stress and Strain-Rate Fields Near a Crack Tip in Creeping Materials —S. KUBO	I-594
On the Time and Loading Rate Dependence of Crack-Tip Fields at Room Temperature—A Viscoplastic Analysis of Tensile Small-Scale Yielding —M. M. LITTLE, E. KREMPL, AND C. F. SHIH	I-615
Boundary-Element Analysis of Stresses in a Creeping Plate with a Crack —V. BANTHIA AND S. MUKHERJEE	I-637
Estimates of the C* Parameter for Crack Growth in Creeping Materials —D. J. SMITH AND G. A. WEBSTER	I-654
Crack Growth in Creeping Solids —V. M. RADHAKRISHNAN AND A. J. McEVILY	I-675
Parametric Analysis of Creep Crack Growth in Austenitic Stainless Steel —K. SADANANDA AND P. SHAHINIAN	I-690
Microstructural and Environmental Effects During Creep Crack Growth in a Superalloy —S. FLOREEN	I-708
Influence of Time-Dependent Plasticity on Elastic-Plastic Fracture Toughness —T. INGHAM AND E. MORLAND	I-721
Index	I-747