

Contents

Introduction

ENGINEERING APPLICATIONS

A Method of Application of Elastic-Plastic Fracture Mechanics to Nuclear Vessel Analysis—P. C. PARIS AND R. E. JOHNSON	II-5
Evaluation of the Elastic-Plastic Fracture Mechanics Methodology on the Basis of Large-Scale Specimens—K. KUSSMAUL AND L. ISSLER	II-41
Studies of Different Criteria for Crack Growth Instability in Ductile Materials—S. KAISER AND A. J. CARLSSON	II-58
Further Developments of a <i>J</i>-Based Design Curve and Its Relationship to Other Procedures—C. E. TURNER	II-80
Application of Two Approximate Methods for Ductile Failure Assessment—L. HODULAK AND J. G. BLAUEL	II-103
Development of a Plastic Fracture Methodology for Nuclear Systems—T. U. MARSTON, R. L. JONES, M. F. KANNINEN, AND D. F. MOWBRAY	II-115
Some Salient Features of the Tearing Instability Theory—H. A. ERNST	II-133
Verification of Tearing Modulus Methodology for Application to Reactor Pressure Vessels with Low Upper-Shelf Fracture Toughness—S. S. TANG, P. C. RICCARDELLA, AND R. HUET	II-156
Ductile Tearing Instability Analysis: A Comparison of Available Techniques—G. G. CHELL AND I. MILNE	II-179
Validation of a Deformation Plasticity Failure Assessment Diagram Approach to Flaw Evaluation—J. M. BLOOM	II-206

Studies on the Failure Assessment Diagram Using the Estimation Method and J-Controlled Crack Growth Approach— C. F. SHIH, V. KUMAR, AND M. D. GERMAN	II-239
Lower-Bound Solutions and Their Application to the Collapse Load of a Cracked Member Under Axial Force and Bending Moment— H. OKAMURA, K. KAGEYAMA, AND Y. TAKAHATA	II-262
Ductile Crack Growth Analysis Within the Ductile-Brittle Transition Regime: Predicting the Permissible Extent of Ductile Crack Growth— I. MILNE AND D. A. CURRY	II-278
Ductile Fracture of Circumferentially Cracked Pipes Subjected to Bending Loads— A. ZAHOOR AND M. F. KANNINEN	II-291
Engineering Methods for the Assessment of Ductile Fracture Margin in Nuclear Power Plant Piping— S. RANGANATH AND H. S. MEHTA	II-309
Fracture of Circumferentially Cracked Type 304 Stainless Steel Pipes Under Dynamic Loading— G. M. WILKOWSKI, J. AHMAD, A. ZAHOOR, C. W. MARSHALL, D. BROEK, I. S. ABOU-SAYED, AND M. F. KANNINEN	II-331
TEST METHODS AND GEOMETRY EFFECTS	
J_R-Curve Testing of Large Compact Specimens— D. E. McCABE AND J. D. LANDES	II-353
On the Unloading Compliance Method of Deriving Single-Specimen R-Curves in Three-Point Bending— A. A. WILLOUGHBY AND S. J. GARWOOD	II-372
Evaluation of Several J_{Ic} Testing Procedures Recommended in Japan— K. OHJI, A. OTSUKA, AND H. KOBAYASHI	II-398
Evaluation of Blunting Line and Elastic-Plastic Fracture Toughness— H. KOBAYASHI, H. NAKAMURA, AND H. NAKAZAWA	II-420
Instability Testing of Compact and Pipe Specimens Utilizing a Test System Made Compliant by Computer Control— J. A. JOYCE	II-439

Computer-Controlled Single-Specimen J-Test—W. A. VAN DER SLUYS

AND R. J. FUTATO

II-464

Quantitative Fractographic Definition and Detection of Fracture

Initiation in COD/ K_{Ic} Test Specimens—S. M. EL-SOUDANI

AND J. F. KNOTT

II-483

Combined Elastic-Plastic and Acoustic Emission Methods for the

Evaluation of Tearing and Cleavage Crack Extension—

M. A. KHAN, T. SHOJI, H. TAKAHASHI, AND H. NIITSUMA

II-506

An Analysis of Elastic-Plastic Fracture Toughness Behavior for J_{Ic}

Measurement in the Transition Region—T. IWADATE,

Y. TANAKA, S.-I. ONO, AND J. WATANABE

II-531

An Evaluation of the J_R -Curve Method for Fracture Toughness

Characterization—D. E. McCABE, J. D. LANDES,

AND H. A. ERNST

II-562

Specimen Geometry and Extended Crack Growth Effects on J_I -R

Curve Characteristics for HY-130 and ASTM A533B Steels—

D. A. DAVIS, M. G. VASSILAROS, AND J. P. GUDAS

II-582

An Elastic-Plastic Fracture Mechanics Study of Crack Initiation in

316 Stainless Steel—P. H. DAVIES

II-611

Thickness Effects on the Choice of Fracture Criteria—H.-W. LIU,

W.-L. HU, AND A. S. KUO

II-632

Experimental Validation of Resistance Curve Analysis—I. MILNE

II-657

CYCLIC PLASTICITY EFFECTS AND MATERIAL CHARACTERIZATION

Elastic-Plastic Fracture Mechanics Analysis of Fatigue Crack

Growth—M. H. EL HADDAD AND B. MUKHERJEE

II-689

Elastic-Plastic Crack Propagation Under High Cyclic Stresses—

K. TANAKA, T. HOSHIDE, AND M. NAKATA

II-708

Load History Effects on the J_R -Curve—J. D. LANDES AND

D. E. McCABE

II-723

Micromechanisms of Ductile Stable Crack Growth in Nuclear Pressure Vessel Steels —W. P. A. BELCHER AND S. G. DRUCE	II-739
Ductile Fracture with Serrations in AISI 310S Stainless Steel at Liquid Helium Temperature —R. L. TOBLER	II-763
J-R Curve Characterization of Irradiated Low-Shelf Nuclear Vessel Steels —F. J. LOSS, B. H. MENKE, A. L. HISER, AND H. E. WATSON	II-777
Initiation of Fatigue Cracks Around Inclusions in Rolling Fatigue —M. FREITAS AND D. FRANCOIS	II-796
Index	II-809