

Contents

Preface to the Fourth Edition	ix
List of Symbols	xiii
Chapter 1 Analysis of Stress	1
1.1 Introduction	1
1.2 Scope of Treatment	2
1.3 Definition of Stress	4
1.4 Components of Stress: Stress Tensor	5
1.5 Some Special Cases of Stress	8
1.6 Internal Force-Resultant and Stress Relations	9
1.7 Stresses on Inclined Planes in an Axially Loaded Member	11
1.8 Variation of Stress within a Body	14
1.9 Two-Dimensional Stress at a Point	17
1.10 Principal Stresses and Maximum Shear Stress in Two Dimensions	19
1.11 Mohr's Circle for Two-Dimensional Stress	20
1.12 Three-Dimensional Stress at a Point	26
1.13 Principal Stresses in Three Dimensions	29
1.14 Normal and Shear Stresses on an Oblique Plane	32
1.15 Mohr's Circle for Three-Dimensional Stress	34
1.16 Boundary Conditions in Terms of Surface Forces	37
Problems	38
Chapter 2 Strain and Stress–Strain Relations	51
2.1 Introduction	51
2.2 Deformation	51
2.3 Strain Defined	52
2.4 Equations of Compatibility	56
2.5 State of Strain at a Point	57
2.6 Engineering Materials	63
2.7 Stress–Strain Diagrams	64
2.8 Hooke's Law and Poisson's Ratio	66

2.9	Generalized Hooke's Law	69
2.10	Measurement of Strain: Bonded Strain Gages	72
2.11	Strain Energy	75
2.12	Strain Energy in Common Structural Members	78
2.13	Components of Strain Energy	81
2.14	Saint-Venant's Principle	83
	Problems	84
<i>Chapter 3 Two-Dimensional Problems in Elasticity</i>		95
3.1	Introduction	95
3.2	Fundamental Principles of Analysis	96
Part A—Formulation and Methods of Solution		97
3.3	Plane Strain Problems	97
3.4	Plane Stress Problems	99
3.5	Airy's Stress Function	102
3.6	Solution of Elasticity Problems	103
3.7	Thermal Stresses	108
3.8	Basic Relations in Polar Coordinates	112
Part B—Stress Concentrations		117
3.9	Stresses Due to Concentrated Loads	117
3.10	Stress Distribution near Concentrated Load Acting on a Beam	121
3.11	Stress Concentration Factors	123
3.12	Neuber's Diagram	127
3.13	Contact Stresses	129
	Problems	136
<i>Chapter 4 Failure Criteria</i>		145
4.1	Introduction	145
4.2	Failure	145
4.3	Failure by Yielding	146
4.4	Failure by Fracture	148
4.5	Yield and Fracture Criteria	151
4.6	Maximum Shearing Stress Theory	152
4.7	Maximum Distortion Energy Theory	153
4.8	Octahedral Shearing Stress Theory	154
4.9	Comparison of the Yielding Theories	157
4.10	Maximum Principal Stress Theory	158
4.11	Mohr's Theory	159
4.12	Coulomb–Mohr Theory	160
4.13	Introductory Fracture Mechanics	163
4.14	Failure Criteria for Metal Fatigue	167
4.15	Fatigue Life under Combined Loading	170
4.16	Impact or Dynamic Loads	172
4.17	Dynamic and Thermal Effects	175
	Problems	177

<i>Chapter 5 Bending of Beams</i>	184
5.1 Introduction	184
Part A—Exact Solutions	184
5.2 Pure Bending of Beams of Symmetrical Cross Section	184
5.3 Pure Bending of Beams of Asymmetrical Cross Section	188
5.4 Bending of a Cantilever of Narrow Section	192
5.5 Bending of a Simply Supported, Narrow Beam	195
Part B—Approximate Solutions	197
5.6 Elementary Theory of Bending	197
5.7 Bending and Shearing Stresses	201
5.8 Effect of Transverse Normal Stress	204
5.9 Composite Beams	206
5.10 Shear Center	212
5.11 Statically Indeterminate Systems	216
5.12 Energy Method for Deflections	219
Part C—Curved Beams	221
5.13 Exact Solution	221
5.14 Tangential Stress. Winkler's Theory	224
5.15 Combined Tangential and Normal Stresses	228
Problems	231
<i>Chapter 6 Torsion of Prismatic Bars</i>	240
6.1 Introduction	240
6.2 Elementary Theory of Torsion of Circular Bars	241
6.3 General Solution of the Torsion Problem	244
6.4 Prandtl's Stress Function	246
6.5 Prandtl's Membrane Analogy	252
6.6 Torsion of Thin-Walled Members of Open Cross Section	256
6.7 Torsion of Multiply Connected Thin-Walled Sections	258
6.8 Fluid Flow Analogy and Stress Concentration	262
6.9 Torsion of Restrained Thin-Walled Members of Open Cross Section	264
6.10 Curved Circular Bars: Helical Springs	267
Problems	270
<i>Chapter 7 Numerical Methods</i>	275
7.1 Introduction	275
7.2 Finite Differences	276
7.3 Finite Difference Equations	279
7.4 Curved Boundaries	281
7.5 Boundary Conditions	284
7.6 Finite Element Method	288
7.7 Properties of a Finite Element	289
7.8 Formulation of the Finite Element Method	291
7.9 Triangular Finite Element	295

7.10	Use of Digital Computers	308
	Problems	309
Chapter 8 Axisymmetrically Loaded Members		314
8.1	Introduction	314
8.2	Thick-Walled Cylinders	315
8.3	Maximum Tangential Stress	320
8.4	Application of Failure Theories	321
8.5	Compound Cylinders	322
8.6	Rotating Disks of Constant Thickness	325
8.7	Rotating Disks of Variable Thickness	330
8.8	Rotating Disks of Uniform Stress	333
8.9	Thermal Stresses in Thin Disks	334
8.10	Thermal Stress in Long Circular Cylinders	336
8.11	Finite Element Solution	340
8.12	Formulation of Axisymmetric Element Problems	341 344
Chapter 9 Beams on Elastic Foundations		349
9.1	Introduction	349
9.2	General Theory	349
9.3	Infinite Beams	350
9.4	Semi-Infinite Beams	355
9.5	Finite Beams: Classification of Beams	358
9.6	Beams Supported by Equally Spaced Elastic Elements	359
9.7	Simplified Solutions for Relatively Stiff Beams	361
9.8	Solution by Finite Differences	362
9.9	Applications	364
	Problems	366
Chapter 10 Energy Methods		369
10.1	Introduction	369
10.2	Work Done in Deformation	369
10.3	Reciprocity Theorem	370
10.4	Castigliano's Theorem	372
10.5	Unit or Dummy Load Method	378
10.6	Crotti-Engesser Theorem	380
10.7	Statically Indeterminate Systems	382
10.8	Principle of Virtual Work	384
10.9	Principle of Minimum Potential Energy	385
10.10	Application of Trigonometric Series	387
10.11	Rayleigh-Ritz Method Problems	391 394

Chapter 11 Elastic Stability	401
11.1 Introduction	401
11.2 Critical Load	401
11.3 Buckling of a Column	403
11.4 End Conditions	405
11.5 Critical Stress in a Column	406
11.6 Allowable Stress	408
11.7 Initially Curved Members	410
11.8 Eccentrically Loaded Columns: Secant Formula	411
11.9 Energy Methods Applied to Buckling	413
11.10 Solution by Finite Differences	420
11.11 Finite Difference Solution for Unevenly Spaced Nodes Problems	425
	426
Chapter 12 Plastic Behavior of Materials	433
12.1 Introduction	433
12.2 Plastic Deformation	434
12.3 True Stress–True Strain Curve in Simple Tension	434
12.4 Instability in Simple Tension	436
12.5 Plastic Deflection of Beams	438
12.6 Analysis of Perfectly Plastic Beams	440
12.7 Collapse Load of Structures	447
12.8 Elastic–Plastic Torsion	451
12.9 Elastic–Plastic Stresses in Rotating Disks	453
12.10 Plastic Stress–Strain Relations	455
12.11 Plastic Stress–Strain Increment Relations	461
12.12 Stresses in Perfectly Plastic Thick-Walled Cylinders Problems	464
	468
Chapter 13 Plates and Shells	472
Part A—Bending of Thin Plates	
13.1 Basic Assumptions	472
13.2 Strain–Curvature Relations	473
13.3 Stress, Curvature, and Moment Relations	475
13.4 Governing Equations of Plate Deflection	476
13.5 Boundary Conditions	478
13.6 Simply Supported Rectangular Plates	481
13.7 Axisymmetrically Loaded Circular Plates	483
13.8 Deflections of Rectangular Plates by the Strain Energy Method	486
13.9 Finite Element Solution	488
Part B—Membrane Stresses in Thin Shells	
13.10 Basic Assumptions	491
13.11 Simple Membrane Action	491
13.12 Symmetrically Loaded Shells of Revolution	493

13.13	Some Common Cases of Shells of Revolution	495
13.14	Cylindrical Shells of General Shape	497
	Problems	500
<i>Appendix A Indicial Notation</i>		503
<i>Appendix B Solution of the Stress Cubic Equation</i>		505
B.1	Principal Stresses	505
B.2	Direction Cosines	506
<i>Appendix C Moments of Composite Areas</i>		510
C.1	Centroid	510
C.2	Moments of Inertia	513
C.3	Parallel-Axis Theorem	514
C.4	Principal Moments of Inertia	517
<i>Appendix D Tables</i>		523
D.1	Average Properties of Common Engineering Materials	524
D.2	Conversion Factors: SI Units to U.S. Customary Units	526
D.3	SI Unit Prefixes	526
D.4	Deflections and Slopes of Beams	527
References		528
Answers to Selected Problems		533
Index		541