

Contents

CHAPTER 1

Fundamentals of Vibration

1.1	Preliminary Remarks	2
1.2	Brief History of Vibration	2
1.3	Importance of the Study of Vibration	4
1.4	Basic Concepts of Vibration	7
1.4.1	Vibration	7
1.4.2	Elementary parts of vibrating systems	7
1.4.3	Degree of freedom	8
1.4.4	Discrete and continuous systems	9
1.5	Classification of Vibration	11
1.5.1	Free and forced vibration	11
1.5.2	Undamped and damped vibration	11
1.5.3	Linear and nonlinear vibration	11
1.5.4	Deterministic and random vibration	12
1.6	Vibration Analysis Procedure	12
1.7	Spring Elements	14
1.7.1	Combination of springs	16
1.8	Mass or Inertia Elements	20
1.8.1	Combinatin of masses	20
1.9	Damping Elements	24
1.9.1	Construction of viscous dampers	24
1.9.2	Combination of dampers	25
1.10	Harmonic Motion	27
1.10.1	Vectorial representation of harmonic motion	28
1.10.2	Complex number representation of harmonic motion	29
1.10.3	Definitions	33

1.11	Harmonic Analysis	34
1.11.1	Numerical computation of coefficients	36
1.12	Vibration Literature	39
1.13	Computer Program	40
References	42	
Review Questions	44	
Problems	45	

CHAPTER 2**Free Vibration of Single Degree of Freedom Systems**

2.1	Introduction	56
2.2	Free Vibration of an Undamped Translational System	56
2.2.1	Equation of motion using Newton's second law of motion	56
2.2.2	Equation of motion using the principle of conservation of energy	
2.2.3	Solution	59
2.2.4	Harmonic motion	60
2.3	Free Vibration of an Undamped Torsional System	64
2.3.1	Equation of motion	65
2.3.2	Solution	66
2.4	Stability Conditions	69
2.5	Energy Method	70
2.6	Free Vibration with Viscous Damping	74
2.6.1	Equation of motion	74
2.6.2	Solution	74
2.6.3	Logarithmic decrement	80
2.6.4	Energy dissipated in viscous damping	82
2.7	Free Vibration with Coulomb Damping	87
2.7.1	Equation of motion	87
2.7.2	Solution	88
2.8	Free Vibration with Hysteretic Damping	91
2.9	Computer Program	94
References	97	
Review Questions	98	
Problems	99	

CHAPTER 3**Harmonically Excited Vibration**

3.1	Introduction	116
3.2	Equation of Motion	116

3.3	Response of an Undamped System under Harmonic Force	117
3.3.1	Total response	120
3.3.2	Beating phenomenon	120
3.4	Response of a Damped System under Harmonic Force	123
3.4.1	Total response	126
3.4.2	Quality factor and bandwidth	127
3.5	Response of a Damped System under $F(t) = F_0 e^{i\omega t}$	128
3.6	Response of a Damped System under the Harmonic Motion of the Base	130
3.6.1	Force transmitted	132
3.6.2	Relative motion	133
3.7	Response of a Damped System under Rotating Unbalance	136
3.8	Forced Vibration with Coulomb Damping	138
3.9	Forced Vibration with Hysteresis Damping	142
3.10	Forced Motion with Other Types of Damping	144
3.11	Self-Excited Vibration and Instability	146
3.12	Vibration-Measuring Instruments	149
3.12.1	Vibrometer	151
3.12.2	Accelerometer	152
3.12.3	Velometer	154
3.12.4	Phase distortion	154
3.12.5	Common types of instruments	156
3.12.6	Frequency-measuring instruments	157
3.13	Computer Program	158
References		160
Review Questions		161
Problems		163

CHAPTER 4

Vibration under General Forcing Conditions

4.1	Introduction	174
4.2	Response under a General Periodic Force	174
4.3	Response under a Periodic Force of Irregular Form	178
4.4	Response under Nonperiodic Force	181
4.5	Convolution Integral	181
4.5.1	Response to an impulse	181
4.5.2	Response to general forcing condition	183
4.5.3	Response to base excitation	184
4.6	Response Spectrum	190
4.6.1	Response spectrum for base excitation	193
4.7	Laplace Transformation	196
4.8	Response to Irregular Forcing Conditions using Numerical Methods	200

4.9 Computer Programs	207
4.9.1 Response under an arbitrary periodic forcing function	207
4.9.2 Response under arbitrary forcing function using the methods of section 4.8	210
References	213
Review Questions	214
Problems	214

CHAPTER 5**Two Degree of Freedom Systems**

5.1 Introduction	222
5.2 Equations of Motion for Forced Vibration	223
5.3 Free Vibration Analysis of an Undamped System	225
5.4 Torsional System	232
5.5 Coordinate Coupling and Principal Coordinates	234
5.6 Forced Vibration Analysis	239
5.7 Semi-Definite Systems	242
5.8 Self-Excitation and Stability	243
5.9 Computer Programs	245
5.9.1 Roots of a quadratic equation	245
5.9.2 Roots of a cubic equation	246
5.9.3 Roots of a quartic equation	248
References	249
Review Questions	250
Problems	250

CHAPTER 6**Multidegree of Freedom Systems**

6.1 Introduction	262
6.2 Multidegree of Freedom Spring–Mass System	262
6.3 Influence Coefficients	264
6.4 Potential and Kinetic Energy Expressions in Matrix Form	268
6.5 Generalized Coordinates and Generalized Forces	270
6.6 Lagrange's Equations	272
6.7 General Equations of Motion in Matrix Form	275
6.8 Eigenvalue Problem	277
6.9 Solution of the Eigenvalue Problem	278
6.9.1 Solution of the characteristic (polynomial) equation	279

6.9.2	Orthogonality of normal modes	283
6.9.3	Repeated eigenvalues	285
6.10	Expansion Theorem	287
6.11	Unrestrained Systems	288
6.12	Forced Vibration	292
6.13	Viscously Damped Systems	294
6.14	Self-Excitation and Stability Analysis	299
6.15	Computer Programs	301
6.15.1	Generating the characteristic polynomial from the matrix	301
6.15.2	Roots of an n th order polynomial equation with complex coefficients	303
6.15.3	Modal analysis of a multidegree of freedom system	306
6.15.4	Solution of simultaneous linear equations	309
References	312	
Review Questions	312	
Problems	313	

CHAPTER 7**Determination of Natural Frequencies and Mode Shapes**

7.1	Introduction	322
7.2	Dunkerley's Formula	322
7.3	Rayleigh's Method	324
7.3.1	Properties of Rayleigh's quotient	325
7.3.2	Computation of the fundamental natural frequency	327
7.3.3	Fundamental frequency of beams and shafts	328
7.4	Holzer's Method	330
7.4.1	Spring-mass systems	333
7.5	Matrix Iteration Method	335
7.5.1	Convergence to the highest natural frequency	337
7.5.2	Computation of intermediate natural frequencies	337
7.6	Jacobi's Method	341
7.7	Standard Eigenvalue Problem	344
7.7.1	Choleski decomposition	345
7.7.2	Other solution methods	346
7.8	Computer Programs	346
7.8.1	Jacobi's method	346
7.8.2	Matrix iteration method	349
7.8.3	Choleski decomposition	352
7.8.4	Eigenvalue solution using Choleski decomposition	353
References	355	
Review Questions	356	
Problems	357	

CHAPTER 8**Continuous Systems**

8.1	Introduction	362
8.2	Transverse Vibration of a String or Cable	362
8.2.1	Equation of motion	362
8.2.2	Initial and boundary conditions	364
8.2.3	Free vibration of a uniform string	365
8.2.4	Free vibration of a string with both ends fixed	366
8.2.5	Traveling-wave solution	369
8.3	Longitudinal Vibration of a Bar or Rod	370
8.4	Torsional Vibration of a Shaft or Rod	377
8.5	Lateral Vibration of Beams	381
8.5.1	Equation of motion	381
8.5.2	Initial and boundary conditions	383
8.5.3	Free vibration	383
8.5.4	Effect of axial force	387
8.5.5	Effects of rotary inertia and shear deformation	390
8.5.6	Other effects	394
8.6	Vibration of Membranes	394
8.6.1	Equation of motion	394
8.6.2	Initial and boundary conditions	396
8.7	Rayleigh's Method	397
8.8	The Rayleigh-Ritz Method	399
8.9	Computer Program	403
	References	405
	Review Questions	407
	Problems	408

CHAPTER 9**Vibration Control**

9.1	Introduction	418
9.2	Reduction of Vibration at the Source	418
9.3	Balancing of Rotating Machines	418
9.3.1	Single-plane balancing	419
9.3.2	Two-plane balancing	421
9.4	Whirling of Rotating Shafts	426
9.4.1	Equations of motion	427
9.4.2	Critical speeds	429
9.4.3	Response of the system	429
9.4.4	Stability analysis	431

9.5	Balancing of Reciprocating Engines	432
9.5.1	Unbalanced forces due to fluctuations in gas pressure	432
9.5.2	Unbalanced forces due to inertia of the moving parts	434
9.5.3	Balancing of reciprocating engines	436
9.6	Control of Vibration	438
9.7	Control of Natural Frequencies	438
9.8	Introduction of Damping	439
9.9	Use of Vibration Isolators	439
9.9.1	Vibration isolation system with rigid foundation	439
9.9.2	Vibration isolation system with flexible foundation	443
9.9.3	Vibration isolation system with partially flexible foundation	446
9.10	Use of Vibration Absorbers	447
9.10.1	Dynamic vibration absorber	447
9.10.2	Damped dynamic vibration absorber	452
9.11	Computer Program	454
References 458		
Review Questions 460		
Problems 460		

CHAPTER 10

Numerical Integration Methods in Vibration Analysis

10.1	Introduction	468
10.2	Finite Difference Method	468
10.3	Central Difference Method for Single Degree of Freedom Systems	469
10.4	Runge-Kutta Method for Single Degree of Freedom Systems	472
10.5	Central Difference Method for Multidegree of Freedom Systems	473
10.6	Finite Difference Method for Continuous Systems	476
10.6.1	Longitudinal vibration of bars	476
10.6.2	Transverse vibration of beams	479
10.7	Houbolt Method	483
10.8	Wilson Method	486
10.9	Newmark Method	489
10.10	Computer Programs	491
10.10.1	Fourth order Runge-Kutta method	491
10.10.2	Central difference method	494
10.10.3	Houbolt method	497
References 501		
Review Questions 503		
Problems 503		

CHAPTER 11**Further Topics in Vibration**

11.1	Overview of the Topics	508
11.2	Introduction to Nonlinear Vibration	508
11.3	Examples of Nonlinear Vibration Problems	508
11.3.1	Simple pendulum	509
11.3.2	Mechanical chatter, belt friction system	509
11.3.3	Variable mass system	510
11.4	Exact Methods for Nonlinear Systems	511
11.5	Approximate Analytical Methods for Nonlinear Systems	512
11.5.1	Iterative method	512
11.5.2	Ritz averaging method	515
11.6	Graphical Methods for Nonlinear Systems	517
11.6.1	Phase plane representation	517
11.6.2	Phase velocity	519
11.6.3	Method of constructing trajectories	519
11.6.4	Obtaining time solution from phase plane trajectories	521
11.7	Stability of Equilibrium States in Nonlinear Systems	522
11.8	Numerical Methods for Nonlinear Systems	524
11.9	Introduction to Random Vibration	525
11.10	Random Variables and Random Processes	525
11.11	Probability Distribution	526
11.12	Mean Value and Standard Deviation	527
11.13	Joint Probability Distribution of Several Random Variables	528
11.14	Correlation Functions of a Random Process	528
11.15	Stationary Random Process	529
11.16	Gaussian Random Process	530
11.17	Fourier Transforms in Random Vibration Analysis	532
11.18	Spectral Density Function of a Random Process	533
11.19	Wide-Band and Narrow-Band Random Processes	536
11.20	Response to Random Excitation	537
11.21	Basic Concept of the Finite Element Method	539
11.22	Equations of Motion of a Finite Element	540
11.23	Finite Element Mass Matrix, Stiffness Matrix, and Force Vector	541
11.23.1	Bar element	541
11.23.2	Torsion element	544
11.23.3	Beam element	545
11.24	Transformation of Finite Element Matrices and Vectors	547
11.25	Equations of Motion of the Complete System of Finite Elements	549
11.26	Incorporation of Boundary Conditions in Finite Element Analysis	551
11.27	Computer Programs	555
11.27.1	Solution of nonlinear vibration problems	555
11.27.2	Solution of beam vibration problems using the finite element method	557

References	560
Review Questions	562
Problems	563

APPENDIX A

Matrices	569
A.1 Definitions	570
A.2 Basic Matrix Operations	573

APPENDIX B

Laplace Transform Pairs	575
--------------------------------	------------

APPENDIX C

Units	579
--------------	------------

Answers to Selected Problems	583
-------------------------------------	------------

Index	591
--------------	------------