

TABLE OF CONTENTS

PREFACE TO THE EXPANDED EDITION	xvii
PREFACE TO THE ORIGINAL EDITION	xix
CHAPTER 1: MULTIPLE LEARNING PROBLEMS ARE SOLVED BY SENSORY-MOTOR SYSTEMS	1
1.1. Introduction: Brain Designs Are Adaptive Designs	1
1.2. Eye Movements as a Model Sensory-Motor System	2
1.3. Intermodality Circular Reactions: Learning Gated by Comparison of Target Position with Present Position	
A. Reciprocal Associative Transformations between Target Position Maps	5
B. Matching of Target Position with Present Position	5
C. Intermodality Map Learning is Gated by Intramodality Matching	5
D. Dimensional Consistency: Head Coordinate Maps	7
1.4. Learning a Target Position Map	7
A. A Many-to-One Transform	7
B. Map Invariance	9
C. A Multimodal Map	9
D. Error-Tolerance and Map Learning	9
E. Self-Consistent Map Learning	9
F. A Self-Regulating Map	11
1.5. From Multimodal Target Map to Unimodal Motor Map	11
1.6. Vector Maps from Comparisons of Target Position Maps and Present Position Maps	12
1.7. Automatic Compensation for Present Position: Code Compression	13
1.8. Outflow versus Inflow in the Registration of Present Position	13
1.9. Corollary Discharges and Calibration of Muscle Plant Contractions	15
1.10. Outflow-Inflow Pattern Matches and Linearization of Muscle Responses: Automatic Gain Control	16
1.11. Motor Vectors Calibrated by Visual Error Signals	17
1.12. Postural Stability: Separate Calibration of Muscle Length and Tension	18
1.13. Planned versus Reactive Movements: The Rear View Mirror Problem	19
1.14. Attentional Gating	21
1.15. Intermodality Interactions in a Head Coordinate Frame	21
1.16. Head Coordinate Maps Encode Predictive Saccades	23
1.17. The Relationship between Macrotheory and Microtheory	27

CHAPTER 2: PARALLEL PROCESSING OF MOVEMENT AND ERROR SIGNALS	31
2.1. Sensory-Motor Coordinates: Hemifield Gradients	31
2.2. Choice of Fixation Light: Network Competition	33
2.3. Correcting Fixation Errors: Competition Precedes Storage in Sensory Short Term Memory	33
A. Short Term Memory of the First Light	33
B. Competition Stage Precedes Sensory Short Term Memory Stage	35
2.4. Parallel Processing of Movement and Error Signals	35
2.5. Why Does A Saccade Generator Exist?	37
2.6. Competitive Choice and Storage in Short Term Memory	39
A. Shunting Interactions	40
B. Ratio Processing and Normalization of Spatial Patterns by Shunting On-Center Off-Surround Networks	40
C. Featural Noise Suppression: Adaptation Level and Pattern Matching	42
D. Receptive Fields, Spatial Frequencies, and Edges	44
E. Short-Term Memory, Feedback Competitive Networks, and Nonlinear Cross-Correlation	45
F. Signal Noise Suppression and Nonlinear Signals	45
G. Dynamic Control of Network Sensitivity: Quenching Threshold and Attentional Gain Control	46
H. Competitive Choice	48
I. Attentional Biasing and Competitive Masking	50
CHAPTER 3: SACCADIC LEARNING USING VISUAL ERROR SIGNALS: SELF-MOTION VERSUS WORLD-MOTION AND CEREBELLAR DYNAMICS	55
3.1. Compensation for Initial Position in the Movement Signal	55
3.2. Explicit versus Implicit Knowledge of Initial Position	55
3.3. Characterization of Correctable Errors	57
3.4. Self-Movement versus World-Movement: Ballistic versus Continuous Movement	61
3.5. A Universal Adaptive Gain Control Mechanism: Saccades, VOR, Posture, and Muscle Gain	64
3.6. Compatibility of Design Hypotheses	64
A. Perform and Test	65
B. Visual Invariance during Saccades	65
3.7. Different Coordinates for Unconditioned and Conditioned Movement Systems	65

A. Unconditioned Movements due to Prewired Connection Gradients	66
B. Conditioned Gain Control due to Visual Error Signals	66
C. Opponent Processing of Visual Error Signals	67
3.8. Correcting Undershoot, Overshoot, and Skewed Saccadic Errors	67
3.9. Curvature Distorting Contact Lens versus Inverting Contact Lens	69
3.10. Equal Access to Error Signals: Separate Anatomies for Unconditioned Movements and Conditioned Gain Changes	72
3.11. Anatomical Interpretation of the Adaptive Gain Stage: The Cerebellum	72
3.12. Superposition of Sampling Map and Error Signal Map: Logarithms and Bidirectional Parallel Fibers	74
3.13. Fractured Somatotopy and/or Bilateral Cerebellar Organization	77
3.14. More Constraints on Cerebellar Learning	79
3.15. Dual Action, Incremental Learning, and Error Signal Attenuation	79
3.16. Numerical Studies of Adaptive Foveation due to Cerebellar Gain Changes: Learned Compensation for System Nonlinearities	82
A. Purely Retinotopic Sampling	83
B. Invariant Target Position Map	85
C. Invariant Target Position Map Plus Retinotopic Map	85
D. Retinotopic Map Plus Eye Position Map	85
E. Noninvariant Target Position Map	88
F. Retinotopic Map Plus Initial Eye Position Map Plus Invariant Target Position Map	88
3.17. Shared Processing Load and Recovery from Lesions	88
3.18. Models of Saccadic Error Correction	90
A. Purely Retinotopic Sampling	97
B. Invariant Target Position Map	98
C. Invariant Target Position Map Plus Retinotopic Map	99
D. Retinotopic Map Plus Eye Position Map	99
E. Noninvariant Target Position Map	99
F. Retinotopic Map Plus Initial Eye Position Map Plus Invariant Target Position Map	100
3.19. Dynamic Coasting	100
3.20. Outflow-Inflow Comparisons: A Large Movement as a Series of Small Movement Segments	101
3.21. Mismatch due to Plant Nonlinearity or to Dynamic Coasting?	101
3.22. Adaptive Control of Dynamic Coasting	102

CHAPTER 4: COMPARING TARGET POSITION WITH PRESENT POSITION: NEURAL VECTORS

		111
4.1.	Reconciling Visually Reactive and Intentional Computations	111
4.2.	Experimental Evidence for Vector Inputs to the Superior Colliculus	111
4.3.	Adaptive Inhibitory Efference Copy in Motor Control	113
4.4.	Multistage Elaboration of a Vector Map	115
4.5.	Attention Modulation in Parietal Cortex and Inhibitory Gating of SC Signals: The Delay in Vector Subtraction	116
4.6.	Stages in the Adaptive Neural Computation of a Vector Difference	120
	A. Head-to-Muscle Coordinate Transform	120
	B. Present Eye Position Signals: Corollary Discharges	121
	C. Simultaneous Calibration of the Head-to-Muscle Transform and of the Vector Difference between Target Position and Eye Position	121
	D. Visually-Mediated Gating of Vector Outputs	123
4.7.	Modulators of Head-to-Muscle Coordinate Learning	124
4.8.	Mathematical Design of the Head-Muscle Interface	126
4.9.	Muscle Linearization and Retinotopic Recoding	128
	A. Linearization of Muscle Response	129
	B. Retinotopic Recoding	130
4.10.	Saccade Staircases and Automatic Compensation for Present Position	131
4.11.	Corrective Saccades in the Dark: An Outflow Interpretation	133

CHAPTER 5: ADAPTIVE LINEARIZATION OF THE MUSCLE PLANT

		135
5.1.	Fast Corrective Saccades versus Slow Muscle Linearization	135
5.2.	Muscle Linearization Network	135
5.3.	Cerebellar Direct Response Cells	139
5.4.	Adaptation to Strabismus Surgery	140
5.5.	Error Correction with and without Adaptive Gain Changes	142
5.6.	Matching within the Outflow-Inflow Interface	142
5.7.	An Explanation of the Steinbach and Smith Data	147
5.8.	A Role for Golgi Tendon Organs in Muscle Linearization	148
5.9.	Dynamic Linearization: Adaptive Sampling during Saccades	151
5.10.	An Agonist-Antagonist Ratio Scale	151
5.11.	Sampling from a Spatial Map of Outflow Position	153

CHAPTER 6: SPATIAL MAPS OF MOTOR PATTERNS	155
6.1. The General Problem: Transforming Pattern Intensities into Map Positions	155
6.2. Antagonistic Positional Gradients, Contrast Enhancement, and Coincidence Detectors	155
6.3. Position-Threshold-Slope Shift Maps	160
6.4. Self-Organizing Spatial Maps	167
6.5. Activity-Dependent Map Formation	170
6.6. Coding of Movement Length and Direction	172
6.7. Normalization of Total PTS Shift Map	172
CHAPTER 7: SACCADE GENERATOR AND SACCADE RESET	175
7.1. Saccade Generator	175
7.2. Converting an Intensity Code into a Duration Code	175
7.3. Summation of Retinotopic and Initial Eye Position Signals to the Saccade Generator	179
7.4. The Eye Position Update Network	179
7.5. Two Types of Initial Position Compensation: Eye Position Update and Muscle Linearization	180
7.6. Saccade Staircases	181
7.7. Circuit Design of the Eye Position Update Network	182
7.8. A Saccade Generator Circuit	184
7.9. Computer Simulations of a Saccade Generator Model	187
7.10. Comparison of Computer Simulations with Neural Data	189
CHAPTER 8: POSTURAL STABILITY AND LENGTH-TENSION REGULATION	193
8.1. Separate Postural and Movement Systems	193
8.2. Tension Equalization Network	194
8.3. Design of the Tension Equalization Network	194
8.4. Adaptive Step Gain and Pulse Gain: Correcting Post-Saccadic Drift	198
8.5. Relationship to the Vestibulo-Ocular Reflex	199
8.6. Cerebellar Functional Heterogeneity	201
CHAPTER 9: SACCADIC RHYTHM AND PREDICTIVE MOVEMENT SEQUENCES	203
9.1. Rhythmic Choices among Multiple Movement Sources	203

9.2.	Distinguishing Correct Predictive Saccades from Incorrect Individual Saccades	204
9.3.	The Temporal Control of Predictive Saccades	205
9.4.	Storage of Temporal Order Information	206
	A. Storage of Temporal Order, Target Match, and Memory Reset	206
	B. Read-Out and STM Storage of a Target Choice	206
	C. HMI Mismatch, Output Gate Closure, and Target Self-Inhibition	206
	D. Read-Out, Reset, and STM Storage of Retinotopic Commands	207
	E. LTM Printing	207
	F. Match-Induced Reset of the TPM	207
9.5.	Design of a Predictive Command Network	210
9.6.	Saccade Generation by Predictive Commands	214
9.7.	Two Types of Output Gates: Target-Driven Gates and Saccade-Driven Gates	217
9.8.	Parietal Light-Sensitive and Saccade Neurons	218
9.9.	Switching between Movement and Postural Eye Position Maps: Frontal Eye Field Control	220
9.10.	Direct Computation of Predictive Difference Vectors from Stored Retinotopic Positions?	222
	A. Getting Started	222
	B. Vector Sign Reversal	224
	C. Motor Recoding and Dimensional Inconsistency	224
	D. Opponent Recoding and Linearity	224

CHAPTER 10: FORMATION OF AN INVARIANT TARGET POSITION MAP

10.1.	Invariant Self-Regulating Multimodal Maps	227
10.2.	Prewired Positional Gradients: The Mean Value Property	228
10.3.	Self-Organizing Target Position Maps: Multimodal Sampling of a Unimodal Eye Position Map	232
10.4.	Double Duty by Sampling Maps and their Neural Interpretation	233
10.5.	Associative Learning at Autoreceptive Synaptic Knobs	234
10.6.	Multimodal Learning of Invariant Self-Regulating Spatial Maps	237
10.7.	Multimodal Learning of an Invariant Self-Regulating Target Position Map	245
10.8.	Associative Pattern Learning	249

**CHAPTER 11: VISUALLY REACTIVE, MULTIMODAL,
INTENTIONAL, AND PREDICTIVE MOVEMENTS:
A SYNTHESIS**

253

11.1. Avoiding Infinite Regress: Planned Movements Share Reactive Movement Parameters	253
11.2. Learning and Competition from a Vector-Based Map to a Light-Based Map	254
11.3. Associative Pattern Learning and Competitive Choice: Non-Hebbian Learning Rule	256
11.4. Light Intensity, Motion, Attentional, and Multimodal Interactions within the Parietal Cortex	260
11.5. Nonspecific and Specific Attentional Mechanisms	263
11.6. Multiple Retinotopic Maps	264
11.7. Interactions between Superior Colliculus, Visual Cortex, and Parietal Cortex	266
11.8. Multiple Target Position Maps within Parietal Cortex and Frontal Eye Fields	269
11.9. Learning Multiply-Activated Target Position Maps	269
11.10. Multiple Parietal and Frontal Eye Field Vector Systems	273
11.11. Learning Neural Vectors and Adaptive Gains in a Predictive Movement System	275
11.12. Frontal Eye Field Control of Voluntary Saccadic Eye Movements and Posture: Cell Types	279
11.13. Coupled Vector and Adaptive Gain Learning	281
11.14. Gating of Learning, Movement, and Posture	282
A. Reading-In, Reset, and Storage of Movement Commands	284
B. Read-Out and Competition of Movement Commands	286
C. Gating of Posture and Learning	288
11.15. When Saccade Choice May Fail: Saccadic Averaging and Partial Vector Compensation	288

CHAPTER 12: ARE THERE UNIVERSAL PRINCIPLES OF SENSORY-MOTOR CONTROL?

291

CHAPTER 13: NEURAL DYNAMICS OF PLANNED ARM MOVEMENTS: EMERGENT INVARIANTS AND SPEED-ACCURACY PROPERTIES DURING TRAJECTORY FORMATION

293

Daniel Bullock and Stephen Grossberg

13.1. Introduction: Are Movement Invariants Explicitly Planned?	294
13.2. Flexible Organization of Muscle Groups into Synergies	296

13.3. Synchronous Movement of Synergies	296
13.4. Factoring Target Position and Velocity Control	298
13.5. Synchrony versus Fitts' Law: The Need for a Neural Analysis of Synergy Formation	299
13.6. Some General Issues in Sensory-Motor Planning: Multiple Uses of Outflow versus Inflow Signals	300
13.7. Neural Control of Arm Position Changes: Beyond the STE Model	305
13.8. Gradual Updating of PPC's during Trajectory Formation	306
13.9. Duration Invariance during Isotonic Movements and Isometric Contractions	309
13.10. Compensatory Properties of the PPC Updating Process	310
13.11. Target Switching Experiments: Velocity Amplification, GO Signal, and Fitts' Law	312
13.12. Velocity Profile Invariance and Asymmetry	314
13.13. Vector Cells in Motor Cortex	316
13.14. Learning Constraints Mold Arm Control Circuits	325
13.15. Comparing Target Position with Present Position to Gate Intermodality Learning	326
13.16. Trajectory Formation using DV's: Automatic Compensation for Present Position	327
13.17. Matching and Vector Integration during Trajectory Formation	329
13.18. Intentionality and the GO Signal: Motor Priming without Movement	331
13.19. Synchrony, Variable Speed Control, and Fast Freeze	333
13.20. Opponent Processing of Movement Commands	334
13.21. System Equations	336
13.22. Computer Simulation of Movement Synchrony and Duration Invariance	339
13.23. Computer Simulation of Changing Velocity Profile Asymmetry at Higher Movement Speeds	339
13.24. Why Faster-than-Linear or Sigmoid Onset Functions?	342
13.25. Computer Simulation of Velocity Amplification during Target Switching	345
13.26. Reconciling Staggered Onset Times with Synchronous Termination Times	345
13.27. Computer Simulation of the Inverse Relation between Duration and Peak Velocity	348
13.28. Speed-Accuracy Trade-off: Woodworth's Law and Fitts' Law	352
13.29. Computer Simulation of Peak Acceleration Data	355
13.30. Updating the PPC using Inflow Signals during Passive Movements	356
13.31. Concluding Remarks	359
Appendix 1: Bell-Shaped Velocity Profile, Fitts' Law, and Staggered Onset Times	360

Appendix 2: Synchrony and Duration Invariance	365
Appendix 3: Passive Update of Position	367

CHAPTER 14: A COMPARATIVE ANALYSIS OF NEURAL MECHANISMS, RECENT DATA, AND ALTERNATIVE MODELS 371

Stephen Grossberg

14.1. Comparative Analysis of Neural Models	371
14.2. Comparative Analysis of Movement Vectors in Eye and Arm Movements	372
14.3. Map Vectors and Difference Vectors	372
14.4. Vector Integration to Endpoint and GO Signal Modulation in Arm Movement Control	373
14.5. GO Signal Generator in Globus Pallidus	374
14.6. Factorization of Position and Velocity Control	375
14.7. Amplification of Peak Velocity and a GO Signal Test	375
14.8. Prediction and Test of Cells that Multiplex a Code for Local Velocity	376
14.9. Learning an Associate Map between Target Position Maps of the Eye-Head and Hand-Arm Movement System	378
14.10. Visually Reactive Movements and the Vector Map Code within Superior Colliculus	379
14.11. Three Interacting Coordinate Systems: Retinotopic, Motor Sector, and Map Vector	379
14.12. Automatic Gain Control of Movement Commands by Visual Error Signals: Cerebellar Learning	380
14.13. Learning a Motor Synergy: Opponent Processing of Error Signals	380
14.14. The Equal Access Constraint	381
14.15. The Vector-to-Sector Transform: Dimensional Consistency of Planned Vectors and Reactive Retinotopic Commands	382
14.16. Movement Gating, Intermodal Mapping, and Compensation between Planned and Reactive Movements	383
14.17. Data and Models of Posterior Parietal Target Positions Coded in Head-Centered Coordinates	384
14.18. Parallel Maps of Eye Position: An Application of Competitive Learning to Gaussian and Linear Teaching Vectors	385
14.19. Back Propagation Model of Target Position: Comparison with Competitive Learning	386
14.20. Comparison of Mammalian and Anuran Head and Vector Representations	389

14.21. The Transformation from Head-Centered Eye Movement Maps to Body-Centered Arm Movement Maps: Neck Corollary Discharges as a Map Teaching Signal	390
14.22. Transformation from Auditory Maps to Visually-Activated Eye Movement Maps	391
14.23. A Related Model of Auditory-to-Visual Transformation: Neuronal Group Selection	392
14.24. Predictive Saccades and Saccade Sequences: The LTM Invariance Principle	392
14.25. Comparison of Saccade Generator Models	393
14.26. Applications of the Model's Circular Reaction to Eye-Hand Coordination by an Adaptive Robot	394
 REFERENCES	 395
 AUTHOR INDEX	 419
 SUBJECT INDEX	 423