

CONTENTS

Engineering Drawing Films *x*

Preface *xi*

1 INTRODUCTION 3

This chapter outlines the graphic language in theory and practice

2 GRAPHIC INSTRUMENTS AND THEIR USE 19

Accurate representation of shape, relationship, and size is accomplished through the use of instruments

3 GRAPHIC GEOMETRY 61

Accurate, concise representation requires a knowledge of geometric constructions

4 LETTERING 101

Complete graphic depiction and specification requires word supplements

5 ORTHOGRAPHIC DRAWING AND SKETCHING 119

Orthographic drawing and sketching is the basic graphic form of representation for design and construction drawings

6 PICTORIAL DRAWING AND SKETCHING 191

Pictorial methods are used either as a basic form of shape description or as a supplement to orthographic depiction

7 AUXILIARY VIEWS 251

Auxiliary views are special projections used to clarify and complete orthographic descriptions of shape

8 SECTIONAL VIEWS AND CONVENTIONS 281

These special views and practices are specific aids to complete and accurate orthographic representation

9 SURFACE INTERSECTIONS 309

Geometric components of an object or assembly meet in intersections which must be shown in order to complete the graphic description

10 DEVELOPED VIEWS 329

These show a representation of the shape and size of thin material used to make an object by folding, rolling, or forming

11 METHODS USED IN MANUFACTURE 347

Concise and complete specification of size requires a knowledge of manufacturing procedures

12 DIMENSIONS, NOTES, LIMITS, AND PRECISION 363

These are the elements used to describe size, which along with a description of shape comprise a complete graphic representation

**13 CHARTS,
GRAPHS,
AND DIAGRAMS 425**

These are graphic representations of data and are fundamental to all of science and engineering.

**14 FUNDAMENTALS
OF DESIGN 447**

Design is the preface to all of engineering; only after design can manufacture, production, construction, etc., be approached

**15 SCREW THREADS,
FASTENERS, KEYS,
AND SPRINGS 505**

Practically all designs of devices, machines, structures, etc., require fasteners and related elements to accomplish their function

**16 WELDING
AND RIVETING 543**

These methods are used to attach components permanently to each other

**17 JIGS
AND FIXTURES 567**

In quantity production, jigs and/or fixtures are used in manufacture in order to assure consistently accurate, precise parts

**18 GEARS
AND CAMS 583**

Many machines require some form of mechanism to change speed, alter relative movement, produce a required design characteristic, or provide a mechanical advantage

19 PIPING 601

Pipes and tubes in great variety are available for the transmission of gasses and liquids to components of machines or from a source of supply to a machine

20 ELECTRIC SYSTEMS 615

Representation of electric or electronic systems is accomplished predominantly by the use of orthographic descriptions combined with symbolic diagrams

21 STRUCTURES 649

The chapter presents graphic knowledge needed in architectural and structural work

22 MAPS AND TOPOGRAPHY 683

Many workers in fields such as geology, navigation, exploration, and archaeology, as well as all engineers, should have a knowledge of maps and topography; this chapter gives graphic fundamentals

23 DRAWINGS FOR ENGINEERING DESIGN AND CONSTRUCTION 703

This chapter discusses professional practices employed in the making of design, detail, assembly, production, construction, and other drawings

Glossary A1

Bibliography of Allied Subjects A8

Appendix A Lettering A15

Appendix B The Slide Rule A22

Appendix C Mathematical Tables A36

**Appendix D Standard Parts, Sizes, Symbols,
and Abbreviations A61**

Appendix E Manufacturer's Specialties A119

Index II