

CONTENTS

1	INTRODUCTION	1
1.1	Multibody Systems,	1
1.2	Reference Frames,	4
1.3	Kinematics,	8
1.4	Dynamic Equations,	27
1.5	Mechanics of Deformable Bodies,	29
1.6	Objectives and Scope of This Book,	30
	References,	33
2	REFERENCE KINEMATICS	34
2.1	Rotation Matrix,	35
2.2	Properties of the Rotation Matrix,	47
2.3	Successive Rotations,	53
2.4	Time Derivative of the Rotation Matrix,	61
2.5	Acceleration Analysis,	79
2.6	The Rodrigues Parameters,	84
2.7	Euler Angles,	89
2.8	The Direction Cosines,	95
2.9	The 4×4 Transformation Matrix,	99
2.10	Concluding Remarks,	110
	References,	112
	Problems,	113

3 ANALYTICAL TECHNIQUES	117
3.1 Generalized Coordinates and Kinematic Constraints, 118	
3.2 Degrees of Freedom and Generalized Coordinate Partitioning, 129	
3.3 Virtual Work and Generalized Forces, 140	
3.4 Lagrange's Equation, 157	
3.5 Calculus of Variations, 175	
3.6 Euler's Equation in Case of Several Variables, 182	
3.7 Equations of Motion of Rigid Body Systems, 193	
3.8 Planar Motion of Rigid Bodies, 203	
3.9 Newton–Euler Equations, 207	
3.10 Concluding Remarks, 211	
References, 214	
Problems, 215	
4 MECHANICS OF DEFORMABLE BODIES	220
4.1 Theory of Elasticity, 221	
4.2 Kinematics of Deformable Bodies, 222	
4.3 Strain Components, 227	
4.4 Physical Interpretation of Strains, 231	
4.5 Stress Components, 233	
4.6 Equations of Equilibrium and Symmetry of the Stress Tensor, 237	
4.7 Constitutive Equations, 240	
4.8 Virtual Work of the Elastic Forces, 247	
4.9 Concluding Remarks, 249	
References, 250	
Problems, 251	
5 CLASSICAL APPROXIMATION METHODS	253
5.1 Assumed Displacement Field, 254	
5.2 Generalized Coordinates of Deformable Bodies, 257	
5.3 Velocity and Acceleration of a Point on a Deformable Body, 263	
5.4 Kinetic Energy of Deformable Bodies, 269	
5.5 Generalized Forces, 285	
5.6 Kinematic Constraints, 293	
5.7 System Equations of Motion, 296	
5.8 Application to a Multibody System, 300	
5.9 Approximation Methods and Partial Differential Equations of Equilibrium, 313	
5.10 Viscoelastic Analysis, 316	
5.11 Lumped Masses, 318	
5.12 Generalized Newton–Euler Equations, 321	

5.13	Concluding Remarks, 322	
	References, 326	
	Problems, 327	
6	FINITE-ELEMENT FORMULATION	331
6.1	Element Shape Functions, 332	
6.2	Reference Conditions, 339	
6.3	Kinetic Energy, 342	
6.4	Generalized Elastic Forces, 353	
6.5	Characterization of Planar Elastic Systems, 354	
6.6	Characterization of Spatial Elastic Systems, 362	
6.7	Coordinate Reduction, 370	
6.8	Viscoelastic Analysis, 374	
6.9	Thermoelastic Analysis, 375	
6.10	Geometric Elastic Nonlinearities, 380	
6.11	Composite Materials, 384	
6.12	Concluding Remarks, 387	
	References, 388	
	Problems, 389	
7	COMPUTER IMPLEMENTATION	390
7.1	Direct Numerical Integration, 391	
7.2	Dynamic Equations in Terms of the System Degrees of Freedom, 396	
7.3	Dynamic Equations with the Multipliers, 403	
7.4	Generalized Coordinate Partitioning, 413	
7.5	Organization of Multibody Computer Programs, 416	
7.6	Numerical Algorithms, 420	
7.7	Concluding Remarks, 431	
	References, 432	
APPENDIX	LINEAR ALGEBRA	434
A.1	Matrix Algebra, 434	
A.2	Eigenvalue Analysis, 439	
A.3	Vector Spaces, 441	
A.4	Chain Rule of Differentiation, 443	
A.5	Principle of Mathematical Induction, 445	
	References, 446	
	Problems, 446	
BIBLIOGRAPHY		449
INDEX		463