

Contents

PREFACE *x*

TO THE READER *xiii*

I FORMULATIONS

||1|| MATHEMATICAL MODELS AND THE COMPUTER *3*

- 1.1. Models, Simulation, and Problem Solving *3*
- 1.2. Direct and Inverse Systems Problems *4*
- 1.3. Modeling Methodology *6*
- 1.4. Classes of Mathematical Models *8*
- 1.5. The Evolution of Modeling and Simulation *10*
- 1.6. Supercomputers and Microcomputers in Field Simulation *13*
- Suggestions for Further Reading *15*

||2|| THE PHYSICAL BASIS FOR PARTIAL DIFFERENTIAL
EQUATIONS CHARACTERIZING FIELDS *17*

- 2.1. Introduction *17*
- 2.2. Unifying Concepts *18*
- 2.3. Procedure for Deriving the Characterizing Equations *23*

2.4. Elliptic Partial Differential Equations: Laplace's Equation	26
2.5. Elliptic Partial Differential Equations: Modified Forms	32
2.6. Elliptic Partial Differential Equations: General Properties and Applications	34
2.7. The Laplacian in Curvilinear Coordinate Systems	37
2.8. Parabolic Partial Differential Equations: Basic and Modified Forms	38
2.9. Parabolic Partial Differential Equations: General Properties and Applications	43
2.10. Hyperbolic Partial Differential Equations: The Wave Equation	45
2.11. Hyperbolic Partial Differential Equations: The Damped Wave Equation	47
2.12. Biharmonic Equations	49
2.13. Summary	50
Suggestions for Further Reading	52
Exercises	52

||3|| **POSING THE MATHEMATICAL PROBLEM** 58

3.1. Introduction	58
3.2. Linear and Nonlinear Equations	58
3.3. Initial and Boundary Conditions	60
3.4. Eigenvalue Problems	64
3.5. Variational Formulations	67
3.6. Well-posed and Ill-posed Problems	73
Suggestions for Further Reading	75
Exercises	75

II **TRANSFORMATIONS**

||4|| **FINITE DIFFERENCE APPROXIMATIONS** 81

4.1. Introduction	81
4.2. Discrete Representation of Variables, Functions, and Derivatives	82
4.3. A Model Problem	86
4.4. Accuracy of Approximations	88
4.5. Higher-Order Difference Approximations	92
4.6. Treatment of Normal Derivative Boundary Conditions	94
4.7. Treatment of Curved and Irregular Boundaries	97
4.8. Use of Graded Grids	100
4.9. Difference Approximations in Polar Coordinates	101
4.10. Difference Approximations Using Differentiation Matrixes	103
4.11. Review of Some Basic Ideas from Functional Analysis	105
References	106
Exercises	106

||5|| BOUNDARY VALUE PROBLEMS 109

5.1. A General Boundary Value Problem 109
 5.2. The Self-Adjoint Property 111
 5.3. Discretizing a Self-Adjoint Problem 113
 5.4. Difference Approximations Using Integration Method 114
 5.5. Integration Method in Higher Dimensions 118
 5.6. Difference Approximations Using Variational Method 122
 5.7. Solving the System $\mathbf{Au} = \mathbf{b}$ 125
 5.8. Other Methods of Solving Elliptic Equations 125
 References 135
 Suggestions for Further Reading 135
 Exercises 136

||6|| INITIAL VALUE PROBLEMS 139

6.1. General Formulation of the Initial Value Problem 139
 6.2. An Explicit Method for Diffusion Equations 140
 6.3. Consistency, Accuracy, Efficiency, and Stability 145
 6.4. Implicit Methods for the Diffusion Equation 150
 6.5. Explicit Methods for the Advective Equation 158
 6.6. Dispersion and Diffusion on a Difference Grid 161
 6.7. Conservation on a Difference Grid 162
 6.8. Conservative Methods for Hyperbolic Equations 164
 6.9. Method of Lines for Initial Value Problems 167
 Suggestions for Further Reading 171
 Exercises 171

||7|| SPECIAL TOPICS 175

7.1. Introduction 175
 7.2. Singularities 175
 7.3. Interfaces, Moving Boundaries, and Free Surfaces 180
 7.4. Nonlinearities 184
 References 191
 Suggestions for Further Reading 191
 Exercises 192

||8|| INTERPOLATION AND APPROXIMATION 193

8.1. Introduction 193
 8.2. The Approximation Problem 193
 8.3. Piecewise Lagrangian Interpolation 195

- 8.4. Piecewise Hermitian Interpolation 203
- 8.5. Interpolation with Polynomial Splines 205
- 8.6. Interpolating Functions of Several Variables 209
 - Suggestions for Further Reading 223
 - Exercises 224

||9|| THE FINITE ELEMENT METHOD 229

- 9.1. Introduction 229
- 9.2. Variational Formulation of the Finite Element Method 230
- 9.3. Method of Weighted Residuals 247
- 9.4. Galerkin Formulation of the Finite Element Method 251
- 9.5. Time-Dependent Field Problems 256
- 9.6. A Comparison of Finite Difference and Finite Element Methods 261
- 9.7. Finite Element Treatment of Sources 266
- 9.8. Treatment of Curved Boundaries 268
 - References 270
 - Suggestions for Further Reading 271
 - Exercises 271

III COMPUTATIONS

||10|| COMPUTATIONAL LINEAR ALGEBRA 275

- 10.1. Introduction 275
- 10.2. Direct Methods of Solving $\mathbf{Au} = \mathbf{b}$ 276
- 10.3. Iterative Methods 288
- 10.4. Direct versus Iterative Methods 297
- 10.5. Variational Methods 298
 - Suggestions for Further Reading 300
 - Exercises 301

||11|| SOFTWARE PACKAGES FOR PARTIAL DIFFERENTIAL EQUATIONS 305

- 11.1. Introduction 305
- 11.2. General-Purpose Higher-Level Languages 307
- 11.3. Software Systems for Elliptic Partial Differential Equations 315
- 11.4. Software Packages for Parabolic and Hyperbolic Partial Differential Equations 318
- 11.5. Special-Purpose Packages for Implementing the Finite Element Method 326

11.6. Role of Symbolic Computation in the Development of Numerical Software 327

References 331

Exercises 332

**||12|| TRENDS IN COMPUTER HARDWARE
AND THEIR IMPACT ON FIELD SIMULATION 334**

12.1. Introduction 334

12.2. The Von Neumann Architecture 336

12.3. Multiple Processing Elements 340

12.4. Pipelining 342

12.5. The ILLIAC IV: Arrays of Processing Elements 345

12.6. STAR-100, ASC, and CRAY-I: Vector Processors 348

12.7. AP-120B and AD-10: Peripheral Array Processors 354

12.8. Networks of Microprocessors 358

References 359

Exercises 360

**||13|| EXAMPLE PROGRAMS:
FINITE DIFFERENCE METHODS 362**

13.1. Introduction 362

13.2. Example 1: A Linear Hyperbolic PDE 366

13.3. Example 2: The ADI Method for a Two-Dimensional Parabolic PDE 370

13.4. Example 3: Flow Around a Cylinder by an SOR-Type Method 378

13.5. Example 4: Steady-State Navier-Stokes Problem 383

References 409

Suggestions for Further Reading 409

Exercises 410

**||14|| EXAMPLE PROGRAMS:
FINITE ELEMENT METHOD 412**

14.1. Introduction 412

14.2. Division of the Domain into Finite Elements 413

14.3. Selection of the Approximating Polynomial 414

14.4. Labeling the Nodes 414

14.5. Preparation of Input Data 416

14.6. Assembly 429

14.7. Solution of Equations 430

14.8. Potential Flow Problem 430

Suggestions for Further Reading 440

Exercises 440

INDEX 441