

Contents

INTRODUCTION	5
Chapter 1	
FINITE ELEMENT METHOD IN CONTINUUM MECHANICS	9
1.1 Continuum Mechanics. Statement of the Initial Boundary Value Problem	9
1.2 About the Finite Element Method	12
1.3 Governing Equations of Finite Element Method	14
1.4 Linear Elastic Materials	19
1.5 Solving Nonlinear Problems	21
Chapter 2	
MODELS OF CONCRETE PLASTICITY	27
2.1 Strength of Concrete	27
2.2 Deformational Model of Isotropic Concrete	34
2.3 Orthotropic Model of Concrete	40
2.4 Model of Reinforced Concrete	48
2.5 Variant of the Associative Flow Theory of Concrete Plasticity	54
2.6 Implementation Models for Unreinforced and Reinforced Concrete	58
Chapter 3	
CREEP OF CONCRETE	69
3.1 Long-term and Thermal Loadings	69
3.2 Concrete under Long-term Loadings	73
3.3 Implementation into the Finite Element Method	84

Chapter 4

MODELS FOR TIMBER AND MASONRY STRUCTURES	87
4.1 Elastic Moduli of Orthotropic Materials	87
4.2 Elastic-Plastic Orthotropic Model for Timber Structures	93
4.3 Elastic-Plastic Orthotropic Continuum Model for Masonry	98
4.4 Implementation into Finite Element Systems	102

Chapter 5

THEORY OF SOIL PLASTICITY	109
5.1 Development of the Flow Theory of Soil Plasticity	109
5.2 The Flow Plasticity Theory of Porous Soils	118
5.3 Implementation of the Flow Theory of Soil Plasticity	126

BIBLIOGRAPHY	133
---------------------	-----

NOTATION	149
-----------------	-----