Contents

Introduction

PART I: The Basics

LESSON 1: Getting Started

A Brief History of C++
Connection to C
Advantages of C++
Evolution of the C++ Standard
Who Uses Programs Written in C++?

Programming a C++ Application
Steps to Generating an Executable
Analyzing Errors and “Debugging”
Integrated Development Environments
Programming Your First C++ Application
Building and Executing Your First C++ Application
Understanding Compiler Errors

What’s New in C++?

LESSON 2: The Anatomy of a C++ Program
Parts of the Hello World Program
Preprocessor Directive #include
The Body of Your Program main ()
Returning a Value
The Concept of Namespaces
Comments in C++ Code
Functions in C++
Basic Input Using std: :cin and Output Using std: : cout

LESSON 3: Using Variables, Declaring Constants
What Is a Variable?
Memory and Addressing in Brief
Declaring Variables to Access and Use Memory

00 00 N N 99 o o O

ST S e B o)

1.7
18
18
19
20
21
22
23
26

31
32
32
32



iv Sams Teach Yourself C++ in One Hour a Day

Declaring and Initializing Multiple Variables of a Type
Understanding the Scope of a Variable
Global Variables
Naming Conventions
Common Compiler-Supported C++ Variable Types
Using Type bool to Store Boolean Values
Using Type char to Store Character Values
The Concept of Signed and Unsigned Integers
Signed Integer Types short, int, long, and long long

Unsigned Integer Types unsigned short, unsigned int,
unsigned long, and unsigned long long

Avoid Overflow Errors by Selecting Correct
Data Types

Floating-Point Types £loat and double
Determining the Size of a Variable Using sizeof

Avoid Narrowing Conversion Errors by Using
List Initialization

Automatic Type Inference Using auto

Using typedef to Substitute a Variable’s Type

What Is a Constant?
Literal Constants
Declaring Variables as Constants Using const
Constant Expressions Using constexpr
Enumerations
Defining Constants Using #define

Keywords You Cannot Use as Variable or Constant Names

LESSON 4: Managing Arrays and Strings
What Is an Array?
The Need for Arrays
Declaring and Initializing Static Arrays
How Data Is Stored in an Array
Accessing Data Stored in an Array
Modifying Data Stored in an Array
Multidimensional Arrays
Declaring and Initializing Multidimensional Arrays
Accessing Elements in a Multidimensional Array

34
35
37
38
39
40
41
41
42

42

43
45
46

48
48
50
50
51
52
53
53
57
58

63
64
64
65
66

.67

69
71
72
73



Contents

Dynamic Arrays . 74
C-style Character Strings , 76
C++ Strings: Using std: :string 79
LESSON 5: Working with Expressions, Statements, and Operators 85
Statements e 86
Compound Statements or Blocks 87
Using Operators . 87
The Assignment Operator (=) 87
Understanding L-values and R-values 87
Operators to Add (+), Subtract (-), Multiply (*), Divide (/),
and Modulo Divide (). .. . . 88
Operators to Increment (++) and Decrement (--) . 89
To Postfix or to Prefix? . 90
Equality Operators (==) and (!=) 92
Relational Operators . 92
Logical Operations NOT, AND, OR, and XOR . , 95
Using C++ Logical Operators NOT (), AND (&s), and OR (| |) 96
Bitwise NOT (~), AND (&), OR (|), and XOR (*) Operators ; 100
Bitwise Right Shift (>>) and Left Shift (<<) Operators . 102
Compound Assignment Operators . . 104
Using Operator sizeof to Determine the Memory Occupied by a Variable 106
Operator Precedence . . 108
LESSON 6: Controlling Program Flow 113
Conditional Execution Using if .. else 114
Conditional Programming Using if .. else , . 15
Executing Multiple Statements Conditionally e 117
Nested if Statements 118
Conditional Processing Using switch-case 122
Conditional Execution Using Operator (2 :) 126
Getting Code to Execute in Loops 128
A Rudimentary Loop Using goto 128
The while Loop 130
The do..while Loop 132
The for Loop 133

The Range-Based for Loop 137



vi

. Sams Teach Yourself C++ in One Hour a Day

Modifying Loop Behavior Using continue and break
Loops That Don’t End—That Is, Infinite Loops
Controlling Infinite Loops

Programming Nested Loops
Using Nested Loops to Walk a Multidimensional Array
Using Nested Loops to Calculate Fibonacci Numbers

LESSON 7: Organizing Code with Functions

The Need for Functions
What Is a Function Prototype?
What Is a Function Definition?
What Is a Function Call, and What Are Arguments?
Programming a Function with Multiple Parameters
Programming Functions with No Parameters or No Return Values
Function Parameters with Default Values
Recursion—Functions That Invoke Themselves
Functions with Multiple Return Statements

Using Functions to Work with Different Forms of Data
Overloading Functions
Passing an Array of Values to a Function
Passing Arguments by Reference

How Function Calls Are Handled by the Microprocessor
Inline Functions
Automatic Return Type Deduction
Lambda Functions

LESSON 8: Pointers and References Explained

What Is a Pointer?
Declaring a Pointer
Determining the Address of a Variable Using the Reference Operator (&)
Using Pointers to Store Addresses
Access Pointed Data Using the Dereference Operator (*)
What Is the sizeof () of a Pointer?

Dynamic Memory Allocation
Using Operators new and delete to Allocate
and Release Memory Dynamically
Effect of Incrementing and Decrementing Operators
(++ and --) on Pointers

139
140
141
143
145
147

151
152
153
154
154
155
156
157
159
161
162
163
165
166
168
169
171
172

177
178
178
179
180
183
185
187

187

191



Contents |

Using the const Keyword on Pointers , o 193
Passing Pointers to Functions 194
Similarities between Arrays and Pointers . 195
Common Programming Mistakes When Using Pointers 198
Memory Leaks ; 198
When Pointers Don’t Point to Valid Memory Locations 199
Dangling Pointers (Also Called Stray or Wild Pointers) 200
Checking Whether Allocation Request Using new Succeeded . 202
Pointer Programming Best-Practices . . 204
What Is a Reference? 205
What Makes References Useful? . 206
Using Keyword const on References 208
Passing Arguments by Reference to Functions . 208

PART !i: Fundamentals of Object-Oriented C++ Programming

LESSON 9: Classes and Objects 215
The Concept of Classes and Objects . 216
Declaring a Class 216

An Object as an Instance of a Class 217
Accessing Members Using the Dot Operator (.) 218
Accessing Members Using the Pointer Operator (->) 219
Keywords public and private 220
Abstraction of Data via Keyword private 222
Constructors 224
Declaring and Implementing a Constructor 224

When and How to Use Constructors 225
Overloading Constructors 227

Class Without a Default Constructor 228
Constructor Parameters with Default Values 230
Constructors with Initialization Lists 231
Destructor 233
Declaring and Implementing a Destructor : 234

When and How to Use a Destructor 234

Copy Constructor 237
Shallow Copying and Associated Problems 237
Ensuring Deep Copy Using a Copy Constructor 240

Move Constructors Help Improve Performance 244



viii | Sams Teach Yourself C++ in One Hour a Day

Different Uses of Constructors and the Destructor. 246
Class That Does Not Permit Copying 246
Singleton Class That Permits a Single Instance 247
Class That Prohibits Instantiation on the Stack 249
Using Constructors to Convert Types 251

this Pointer ’ 254

sizeof () a Class 255

How struct Differs from class 257

Declaring a friend of a class 258

union: A Special Data Storage Mechanism 260
Declaring a Union 260
Where Would You Use a union? 261

Using Aggregate Initialization on Classes and Structs 263
constexpr with Classes and Objects 266

LESSON 10: Implementing Inheritance 271

Basics of Inheritance 272
Inheritance and Derivation 272
C++ Syntax of Derivation 274
Access Specifier Keyword protected 276
Base Class Initialization—Passing Parameters to the Base Class 279
Derived Class Overriding Base Class’s Methods 281
Invoking Overridden Methods of a Base Class 283
Invoking Methods of a Base Class in a Derived Class 284
Derived Class Hiding Base Class’s Methods 286
Order of Construction 288
Order of Destruction 288

Private Inheritance 291

Protected Inheritance 293

The Problem of Slicing 297

Multiple Inheritance 297

Avoiding Inheritance Using final 300

LESSON 11: Polymorphism 305

Basics of Polymorphism 306

Need for Polymorphic Behavior 306

Polymorphic Behavior Implemented Using Virtual Functions 308



Contents ix

Need for Virtual Destructors 310
How Do virtual Functions Work? Understanding
the Virtual Function Table 314
Abstract Base Classes and Pure Virtual Functions , 318
Using virtual Inheritance to Solve the Diamond Problem 321
Specifier override to Indicate Intention to Override ' 326
Use f£inal to Prevent Function Overriding 327
Virtual Copy Constructors? 328
LESSON 12: Operator Types and Operator Overloading 335
What Are Operators in C++? . 336
Unary Operators ; . 337
Types of Unary Operators ; 337
Programming a Unary Increment/Decrement Operator v 338
Programming Conversion Operators 341
Programming Dereference Operator (*) and Member
Selection Operator (->) 344
Binary Operators . . 346
Types of Binary Operators 346
Programming Binary Addition (a+b) and Subtraction (a-b) Operators 347
Implementing Addition Assignment (+=) and Subtraction
Assignment (-=) Operators . 350
Overloading Equality (==) and Inequality (!=) Operators 352
Overloading <, >, <=, and >= Operators 354
Overloading Copy Assignment Operator (=) 357
Subscript Operator ( [1) 360
Function Operator () 364
Move Constructor and Move Assignment Operator for High
Performance Programming 365
The Problem of Unwanted Copy Steps 365
Declaring a Move Constructor and Move Assignment Operator 366
User Defined Literals 3
Operators That Cannot Be Overloaded 373
LESSON 13: Casting Operators 377
The Need for Casting : 378

Why C-Style Casts Are Not Popular with Some C++ Programmers , 379



' Sams Teach Yourself C++ in One Hour a Day

The C++ Casting Operators
Using static_cast
Using dynamic_cast and Runtime Type Identification
Using reinterpret_cast
Using const_cast

Problems with the C++ Casting Operators

LESSON 14: An Introduction to Macros and Templates
The Preprocessor and the Compiler
Using Macro #define to Define Constants
Using Macros for Protection against Multiple Inclusion
Using #define to Write Macro Functions
Why All the Parentheses?
Using Macro assert to Validate Expressions
Advantages and Disadvantages of Using Macro Functions
An Introduction to Templates
Template Declaration Syntax
The Different Types of Template Declarations
Template Functions
Templates and Type Safety
Template Classes
Declaring Templates with Multiple Parameters
Declaring Templates with Default Parameters
Sample Template class<> HoldsPair
Template Instantiation and Specialization
Template Classes and static Members
Variable Templates, Also Called Variadic Templates
Using static_assert to Perform Compile-Time Checks
Using Templates in Practical C++ Programming

PART lil: Learning the Standard Template Library (STL)

LESSON 15: An Introduction to the Standard Template Library

STL Containers
Sequential Containers
Associative Containers

Container Adapters

379
380
381
384
385
386

391
392
392
395
396
398
399
400
402
402
403
403
405
406
407
408
408
410
412
413
417
418

421
422
422
423
425



STL Iterators

STL Algorithms

The Interaction between Containers and Algorithms Using Iterators
Using Keyword auto to Let Compiler Define Type

Choosing the Right Container

STL String Classes

LESSON 16: The STL String Class

The Need for String Manipulation Classes

Working with the STL String Class
Instantiating the STL String and Making Copies
Accessing Character Contents of a std: :string
Concatenating One String to Another
Finding a Character or Substring in a String
Truncating an STL string
String Reversal
String Case Conversion

Template-Based Implementation of an STL String

C++14 operator “”sin std::string

LESSON 17: STL Dynamic Array Classes

The Characteristics of std: :vector

Typical Vector Operations
Instantiating a Vector
Inserting Elements at the End Using push_back ()
List Initialization
Inserting Elements at a Given Position Using insert ()
Accessing Elements in a Vector Using Array Semantics
Accessing Elements in a Vector Using Pointer Semantics
Removing Elements from a Vector

Understanding the Concepts of Size and Capacity

The STL deque Class

LESSON 18: STL 1ist and forward list
The Characteristics of a std: :list
Basic 1ist Operations
Instantiating a std: : 1ist Object
Inserting Elements at the Front or Back of the List

Contents |

425
426
427
429
429
432

435
436
437
437
440
442

445
448
449
450
451

455
456
456
456
458
459
459
462

464
465
467
469

475
476
476
476
478

Xi



xii

| Sams Teach Yourself C++ in One Hour a Day

Inserting at the Middle of the List
Erasing Elements from the List
Reversing and Sorting Elements in a List
Reversing Elements Using 1ist::reverse()
Sorting Elements

Sorting and Removing Elements from a 1ist That Contains
Instances of a class

std::forward list Introduced in C++11

LESSON 19: STL Set Classes

An Introduction to STL Set Classes

Basic STL set and multiset Operations
Instantiating a std: :set Object
Inserting Elements in a set or multiset
Finding Elements in an STL set or multiset
Erasing Elements in an STL set or multiset

Pros and Cons of Using STL set and multiset
STL Hash Set Implementation std: :unordered_set and

std: :unordered multiset

LESSON 20: STL Map Classes

An Introduction to STL Map Classes

Basic std: :map and std: :multimap Operations
Instantiating a std: :map Or std: :multimap
Inserting Elements in an STL map or multimap
Finding Elements in an STL map
Finding Elements in an STL multimap
Erasing Elements from an STL map or multimap

Supplying a Custom Sort Predicate

STL’s Hash Table-Based Key-Value Container
How Hash Tables Work

Using unordered_map and unordered_multimap

PART 1V: More STL

LESSON 21: Understanding Function Objects
The Concept of Function Objects and Predicates
Typical Applications of Function Objects

479
482
483
484
485

487
490

495
496
496
497
499
500
502
507

507

513
514
515
315
517
519
522
522
525
528
529
529

537
538
538



Contents | Xii

Unary Functions . . 538
Unary Predicate . 543
Binary Functions 545
Binary Predicate 547
LESSON 22: Lambda Expressions 553
What Is a Lambda Expression? 554
How to Define a Lambda Expression 555
Lambda Expression for a Unary Function 555
Lambda Expression for a Unary Predicate 557
Lambda Expression with State via Capture Lists [. . .] 559
The Generic Syntax of Lambda Expressions 560
Lambda Expression for a Binary Function 562
Lambda Expression for a Binary Predicate . 564
LESSON 23: STL Algorithms 569
What Are STL Algorithms? . 570
Classification of STL Algorithms 570
Non-Mutating Algorithms 570
Mutating Algorithms 571
Usage of STL Algorithms 573
Finding Elements Given a Value or a Condition : 573
Counting Elements Given a Value or a Condition 576
Searching for an Element or a Range in a Collection 577
Initializing Elements in a Container to a Specific Value 580
Using std: :generate () to Initialize Elements to a Value
Generated|at Runtime . 582
Processing Elements in a Range Using for each () 583
Performing Transformations on a Range Using std: : transform() 585
Copy and Remove Operations . 588
Replacing Values and Replacing Element
Given a Condition 590
Sorting and Searching in a Sorted Collection and Erasing Duplicates 592
Partitioning a Range 595

Inserting Elements in a Sorted Collection 597



Xiv ‘ Sams Teach Yourself C++ in One Hour a Day

LESSON 24: Adaptive Containers: Stack and Queue
The Behavioral Characteristics of Stacks and Queues
Stacks
Queues
Using the STL stack Class
Instantiating the Stack
Stack Member Functions
Insertion and Removal at Top Using push () and pop ()
Using the STL queue Class
Instantiating the Queue
Member Functions of a queue

Insertion at End and Removal at the Beginning of queue

via push () and pop ()

Using the STL Priority Queue
Instantiating the priority gqueue Class
Member Functions of priority gueue

Insertion at the End and Removal at the Beginning of priority queue

via push () and pop ()

LESSON 25: Working with Bit Flags Using STL
The bitset Class
Instantiating the std: :bitset
Using std: :bitset and Its Members
Useful Operators Featured in std: :bitset
std: :bitset Member Methods
The vector<bool>
Instantiating vector<bools

vector<bools Functions and Operators

PART V: Advanced C++ Concepts

LESSON 26: Understanding Smart Pointers

What Are Smart Pointers?
The Problem with Using Conventional (Raw) Pointers
How Do Smart Pointers Help?

How Are Smart Pointers Implemented?

Types of Smart Pointers
Deep Copy
Copy on Write Mechanism

603
604
604
604
605
605
606
607
609
609
610

611
613
613
615

616

621
622
622
623
624
625
627
627
628

633
634
634
634
635
636
637
639



Contents | XV

Reference-Counted Smart Pointers 639
Reference-Linked Smart Pointers 640
Destructive Copy 640

Using the std: :unigue_ptr 643
Popular Smart Pointer Libraries . o 645
LESSON 27: Using Streams for Input and Output 649
Concept of Streams 650
Important C++ Stream Classes and Objects 651
Using std: :cout for Writing Formatted Data to Console 652
Changing Display Number Formats Using std: :cout . 653
Aligning Text and Setting Field Width Using std: : cout 655

Using std: :cin for Input 656
Using std: :cin for Input into a Plain Old Data Type . . 656

Using std: :cin: :get for Input into char* Buffer 657

Using std: :cin for Input into a std: :string . . 658

Using std: : £stream for File Handling 660
Opening and Closing a File Using open () and close () ‘ 660
Creating and Writing a Text File Using open () and operator<< 662
Reading a Text File Using open () and operatorss 663
Writing to and Reading from a Binary File 664

Using std: :stringstream for String Conversions 666
LESSON 28: Exception Handling 671
What Is an Exception? . 672
What Causes Exceptions? 672
Implementing Exception Safety via try and catch 673
Using catch(...) to Handle All Exceptions 673
Catching Exception of a Type 674
Throwing Exception of a Type Using throw 676
How Exception Handling Works 677
Class std: :exception 680
Your Custom Exception Class Derived from std: :exception 680
LESSON 29: Going Forward 687
What’s Different in Today’s Processors? 688
How to Better Use Multiple Cores 689
What Is a Thread? 689

Why Program Multithreaded Applications? 690



Xvi

Sams Teach Yourself C++ in One Hour a Day

How Can Threads Transact Data?
Using Mutexes and Semaphores to Synchronize Threads.
Problems Caused by Multithreading

Writing Great C++ Code

C++17: Expected Features
if and switch Support Initializers
Copy Elision Guarantee
std::string_view Avoids Allocation Overheads
std::variant As a Typesafe Alternative to a union
Conditional Code Compilation Using if constexpr
Improved Lambda Expressions
Automatic Type Deduction for Constructors
template<auto>

Learning C++ Doesn’t Stop Here!
Online Documentation
Communities for Guidance and Help

PART Vi: Appendixes

APPENDIX A: Working with Numbers: Binary and Hexadecimal
APPENDIX B: C++ Keywords

APPENDIX C: Operator Precedence

APPENDIX D: ASCII Codes

APPENDIX E: Answers

Index

691
692
692
693
694

/695

696
696
697
697
698
698
699
699
699
699

701

707

709

Tad

717

763



