

CONTENTS

PART 1 FLUID DYNAMICS

Chapter 1 Properties of Fluids

1.1	Types of fluid flow	3
1.2	Newtonian fluids	5
1.3	Viscosity of gases	7
1.4	Viscosity of liquids	13
1.5	Non-Newtonian fluids	31

Chapter 2 Laminar Flow and Momentum Balances

2.1	Momentum balance	36
2.2	Flow of a falling film	37
2.3	Flow between parallel plates	41
2.4	Flow through a circular tube	43
2.5	General momentum equations	47
2.6	The conservation of momentum equation in curvilinear coordinates	53
2.7	Application of Navier-Stoke's equation	59

Chapter 3 Turbulent Flow and Experimental Results

3.1	Friction factors for flow in tubes	75
3.2	Flow in noncircular conduits	82
3.3	Flow past submerged bodies	83
3.4	Flow through packed beds of solids	91
3.5	Fluidized beds	102

Chapter 4 Energy Balance Applications in Fluid Flow

4.1	Conservation of energy	111
4.2	Friction losses in straight conduits	114
4.3	Enlargement and contraction	117
4.4	Flow through valves and fittings	118
4.5	Flow through smooth bends and coils	121
4.6	Flow measurement	123
4.7	Flow from ladles	134

Chapter 5 Flow and Vacuum Production

5.1	Pumps	143
5.2	Fans and blowers	150
5.3	High-velocity jets	157
5.4	Vacuum production	167

PART 2 ENERGY TRANSPORT**Chapter 6 Fourier's Law and Thermal Conductivity of Materials**

6.1	Fourier's law and thermal conductivity	183
6.2	Thermal conductivity of gases	185
6.3	Thermal conductivity of solids	188
6.4	Thermal conductivity of liquids	196
6.5	Thermal conductivity of bulk materials	198

Chapter 7 Heat Transfer and the Energy Equation

7.1	Heat transfer with forced convection in a tube	207
7.2	Heat transfer with laminar forced convection over a flat plate	213
7.3	Heat transfer with natural convection	220
7.4	Heat conduction	226
7.5	The general energy equation	229
7.6	The energy equation in curvilinear coordinates	233

Chapter 8 Correlations for Heat-Transfer with Convection

8.1	Heat-transfer coefficients for forced convection in tubes	242
8.2	Heat-transfer coefficients for forced convection past submerged objects	249
8.3	Heat transfer coefficients for natural convection	252
8.4	Quenching heat-transfer coefficients	256
8.5	Boiling heat transfer	263

Chapter 9 Conduction of Heat in Solids

9.1	The energy equation for conduction	277
9.2	Steady-state one-dimensional systems	278
9.3	Steady-state, two-dimensional heat flow	285
9.4	Transient systems, finite dimensions	290
9.5	Transient conditions, infinite and semi-infinite solids	316
9.6	Simple multidimensional problems	321

Chapter 10 Solidification Heat Transfer

10.1	Solidification in sand molds	329
10.2	Solidification in metal molds	335
10.3	Integral solution for solidification	350
10.4	Continuous casting	353

Chapter 11 Radiation Heat Transfer

11.1	Basic characteristics	361
11.2	The black radiator and emissivity	363
11.3	The energy distribution and the emissive power	364
11.4	Gray bodies and absorptivity	369
11.5	Exchange between infinite parallel plates	370
11.6	View factors	374
11.7	Electric circuit analogy for radiation problems	379
11.8	Furnace enclosures	381
11.9	Radiation combined with convection	387
11.10	Radiation from gases	389
11.11	Enclosures filled with radiating gases	395
11.12	Transient conduction with radiation at the surface	397

Chapter 12 Thermal Behavior of Metallurgical Packed-Bed Reactors

12.1	Initial definitions and assumptions	404
12.2	Steady state, counter-current flow	406
12.3	Heat-transfer coefficients in packed beds	412
12.4	Stationary bed, infinite heat transfer	414
12.5	Stationary bed, infinite heat-transfer coefficient, and heat of reaction	417
12.6	Stationary bed, effect of thermal conductivity within the bed	420
12.7	The effect of a finite heat-transfer coefficient—stationary bed	422

PART 3 MASS TRANSPORT**Chapter 13 Fick's Law and Diffusivity of Materials**

13.1	Definition of fluxes—Fick's first law	431
13.2	Diffusion in solids	433
13.3	Diffusion in solid nonmetals	449
13.4	Diffusion in liquids	455
13.5	Diffusion in gases	463
13.6	Diffusion through porous media	467

Chapter 14 Diffusion in Solids

14.1	Steady-state diffusion experiments	473
14.2	Transient diffusion experiments	478
14.3	Finite system solutions	486
14.4	Diffusion-controlled processes with a moving interface	490
14.5	Homogenization of alloys	497
14.6	Formation of surface tarnish layers	502
14.7	Surface coatings	510

Chapter 15 Mass Transfer in Fluid Systems

15.1	Diffusion through a stagnant gas film	515
------	---	-----

15.2	Diffusion in a moving gas stream	518
15.3	Diffusion into a falling liquid film	521
15.4	The mass-transfer coefficient	524
15.5	Forced convection over a flat plate—approximate integral technique	529
15.6	General equation of diffusion with convection	532
15.7	Forced convection over a flat plate—exact solution	535
15.8	Correlations of mass-transfer coefficients for turbulent flow	537
15.9	Models of the mass-transfer coefficient	542
Chapter 16 Interphase Mass Transfer		
16.1	Two-resistance mass-transfer theory	547
16.2	Mixed control in gas–solid reactions	551
16.3	Mass transfer with vaporization	560
16.4	The effect of temperature and the concept of thermal stability	567
Appendix I	573
Appendix II	574
Appendix III	586
Appendix IV	588
List of Principal Symbols	599
Index	605