

Contents

FOREWORD	ix
PREFACE	xi
NOTATION	xiii
1. Dynamic Systems	1
1.1 System concepts	1
1.2 Open-loop systems	3
1.3 "Feedback"—closed-loop systems	6
1.4 The phase-plane diagram	9
2. Route Capacity—Laws for Vehicle Following	18
2.1 Lane capacity	18
2.2 Car-following theory	19
2.3 Automatic vehicle systems	26
3. Control of Vehicle Spacing—Railway Signalling	31
3.1 Necessity for signalling on railways	31
3.2 The "train-order" system	33
3.3 The "block" system	33
3.4 Lock and block	35
3.5 Multiple-aspect signalling	36
4. Problems of Congestion—Traffic Regulation	41
4.1 Random events	41
4.2 Queues—Poisson arrivals—constant service times	41
4.3 Exponential service times	43
4.4 Effect of delays on headway of signalled systems	43
4.5 Statistical aspects of car-following behaviour	46
4.6 Traffic waves	49
5. Computer Aids to Operation—Traffic Surveillance and Control	52
5.1 Application of digital computers	52
5.2 Continuous progress control (C.P.C.), Dynamic programming	52
5.3 Optimum train sequence	55
5.4 Traffic surveillance and control	56
5.5 Control of cascaded vehicles	59
5.6 System flow charts	60
5.7 Train describers	60

6. Measurement of Power—Analogue Computing	63
6.1 Mechanical manipulation of data	63
6.2 Equivalent mechanical and electrical quantities	66
6.3 Potential and flow	66
6.4 Operational amplifiers	66
6.5 Vehicle suspension analogy	68
6.6 Application to strings of vehicles	71
6.7 Hybrid computers	73
6.8 Simulation of service environment	74
7. Vehicle Detection	76
7.1 Presence detectors	76
7.2 Track circuits	76
7.3 Jointless track circuits	78
7.4 Guided radar	79
8. Vehicle Identification	84
8.1 The "Identra" system	84
8.2 Bus electronic scanning indicator	84
8.3 Automatic wagon-recording system	87
9. Communication of Control Signals to Moving Vehicles	89
9.1 Automatic warning systems—cab signalling	89
9.2 The "Indusi" system	91
9.3 The "Signum" system	92
9.4 Beacon devices	92
9.5 Coded track circuit	94
9.6 Professor Poupé's system of coded track circuits	94
9.7 Use of continuous conductors in the track	96
9.8 Combination of magnetic and inductive loop systems	100
10. Interlocking—Sequence Control	102
10.1 Mechanical interlocking	102
10.2 Boolean algebra	104
11. Sorting and Marshalling	107
11.1 The hump yard	107
11.2 Automatic retarders	108
11.3 Dowty retarders	109
12. Control of Acceleration and Power	112
12.1 Limitations	112
12.2 Equations of motion	113
12.3 Values of resistance coefficient	114
12.4 Estimation of distance-time relationships	117
12.5 Coasting	118
12.6 Control of engine speed	120
12.7 Automatic transmissions	123

12.8 Control of electric motive power	125
12.9 Use of transductors in power control	128
12.10 Application of induction motors	130
12.11 Wheel-slip control	134
12.12 Control of diesel power	139
12.13 Adaptive control	141
12.14 Shock factors in acceleration	141
13. Control of Braking	146
13.1 Forms of braking	146
13.2 Physiological aspects	149
13.3 Control of slip (slow up)	149
13.4 "On-tread" braking	152
13.5 "Off-tread" braking	153
13.6 Servo actuation	154
13.7 The compressed-air brake	155
13.8 The electro-pneumatic (E.P.) brake	156
13.9 The vacuum brake	157
14. Steering—Directional Stability	159
14.1 Steering	159
14.2 Directional stability	162
14.3 Hertzian contact	165
14.4 Running of coned wheels	168
14.5 Inscription within sharp curves—steering by flanges	169
14.6 Oscillation of bogies	171
14.7 Motion on curves at speed	174
14.8 Effect of oscillation on passengers	174
15. Automatic Railways	177
15.1 General principles	177
15.2 Analysis of human contribution under the present system	178
15.3 Possible systems for intensively used passenger lines	181
15.4 Existing installations	182
15.5 Systems for high-speed working	189
16. Possibilities for the Future	192
16.1 The need for development of new transport modes	192
16.2 Possible improvements in control on the highway	194
16.3 High capacity systems—effect of station stops	197
16.4 Mono- and duorails	200
16.5 Transit expressways	201
16.6 Steerable wheels	202
16.7 Blake system	203
16.8 Air-cushion support	204
16.9 Linear motors	207
Appendix I	223
Theory of Control	223
1. Equivalence of dynamic and active systems	223
2. Literature available	228

3. The Laplace transform-transfer function	228
4. Effect of time delay	232
5. Criteria for stability	233
6. Root locus plots	234
7. Nyquist and Bode representation	236
8. Common forms of non-linearity	241
9. The describing function	243
10. Inverse Nyquist or Whitley diagram	245
11. Liapunov's second method	246
12. Random inputs	247
13. On-line control—sampled data	247
Appendix II	
The S.I. Units	248
1. Advantages and use of system	248
2. Conversion factors	249
NAME INDEX	251
SUBJECT INDEX	253