

Contents

<i>Preface</i>	ix
1 Basic concepts of the theory of plasticity	1
1.1 Typical approximations of uniaxial response of materials	1
1.2 The notion of generalized yield/failure criterion	3
1.3 Generalization of the concepts of perfectly plastic and strain-hardening material	4
1.4 Determination of plastic strain; deformation and flow theories of plasticity	9
1.5 Review of fundamental postulates of plasticity; uniqueness of the solution	12
2 Elastic-perfectly plastic formulations	19
2.1 General considerations	19
2.2 Geometric representation of the failure surface	20
2.3 Selection of stress invariants for the mathematical description	21
2.4 Failure criteria for geomaterials	23
2.4.1 Mohr-Coulomb failure criterion	23
2.4.2 Drucker-Prager and other derivative criteria	26
2.4.3 Modified criteria based on smooth approximations to Mohr-Coulomb envelope	28
2.4.4 Non-linear approximations in meridional sections	30
2.5 Derivation of constitutive relation	33
2.5.1 Matrix formulation	35
2.6 Consequences of a non-associated flow rule	37
3 Isotropic strain-hardening formulations	39
3.1 'Triaxial' tests and their mathematical representation	39
3.1.1 Mohr-Coulomb criterion in 'triaxial' space	40
3.1.2 On the behaviour of a perfectly plastic Mohr-Coulomb material	42
3.1.3 Review of typical mechanical characteristics of granular materials	44

3.2	Volumetric hardening; Critical State model	47
3.2.1	Formulation in the ‘triaxial’ $\{p, q\}$ space	47
3.2.2	Comments on the performance	52
3.2.3	Generalization and specification of the constitutive matrix	55
3.3	Deviatoric hardening model	56
3.3.1	Formulation in the ‘triaxial’ $\{p, q\}$ space	56
3.3.2	Comments on the performance	59
3.3.3	Generalization and specification of the constitutive matrix	62
3.4	Combined volumetric-deviatoric hardening	63
3.5	Specification of constitutive matrix under undrained conditions	67
4	Combined isotropic-kinematic hardening rules	69
4.1	Bounding surface plasticity; volumetric hardening framework	69
4.1.1	Formulation in the ‘triaxial’ $\{p, q\}$ space	70
4.1.2	Comments on the performance	74
4.1.3	Generalization and specification of the constitutive matrix	76
4.2	Bounding surface plasticity; deviatoric hardening framework	78
4.2.1	Formulation in the ‘triaxial’ $\{P, Q\}$ space	79
4.2.2	Comments on the performance	83
4.2.3	Generalization and specification of the constitutive matrix	86
5	Numerical integration of constitutive relations	91
5.1	Euler’s integration schemes	91
5.2	Numerical integration of $\{p, q\}$ formulation	92
5.2.1	Stress-controlled scheme	93
5.2.2	Strain-controlled schemes	93
5.3	Numerical examples of integration in $\{p, q\}$ space	95
5.3.1	Critical state model; drained $p = \text{const.}$ compression	95
5.3.2	Deviatoric hardening model; drained ‘triaxial’ compression	98
5.3.3	Deviatoric hardening model; undrained ‘triaxial’ compression	98
5.4	General methods for numerical integration	104
5.4.1	Statement of algorithmic problem	105
5.4.2	Notion of closest point projection	106
5.4.3	Return-mapping algorithms	108
6	Introduction to limit analysis	113
6.1	Formulation of lower and upper bound theorems	113
6.2	Examples of applications of limit theorems in geotechnical engineering	118

