

Contents

About the Authors *xiii*

Series Preface *xv*

Acknowledgements *xvii*

Glossary of Terms *xix*

1 **Introduction** *1*

1.1 General *1*

1.2 Systems Development *3*

1.3 Skills *8*

1.4 Human Aspects *9*

1.4.1 Introduction *9*

1.4.2 Design Considerations *10*

1.4.3 Legislation *12*

1.4.4 Summary of Legal Threats *12*

1.4.5 Conclusions *13*

1.5 Overview *14*

Exercises *17*

References *17*

Further Reading *17*

2 **The Aircraft Systems** *19*

2.1 Introduction *19*

2.2 Definitions *19*

2.3 Everyday Examples of Systems *21*

2.4 Aircraft Systems of Interest *24*

2.4.1 Airframe Systems *28*

2.4.2 Vehicle Systems *28*

2.4.3 Interface Characteristics of Vehicle Systems *30*

2.4.4 Avionics Systems *31*

2.4.5 Interface Characteristics of Vehicle and Avionics Systems *31*

2.4.5.1 Vehicle Systems *32*

2.4.5.2 Avionics Systems *32*

2.4.6 Mission Systems *32*

2.4.7 Interface Characteristics of Mission Systems *33*

2.5	Ground Systems	33
2.6	Generic System Definition	34
	Exercises	37
	References	37
	Further Reading	37
3	The Design and Development Process	39
3.1	Introduction	39
3.2	Definitions	39
3.3	The Product Lifecycle	41
3.4	Concept Phase	46
3.4.1	Engineering Process	48
3.4.2	Engineering Skills	48
3.5	Definition Phase	50
3.5.1	Engineering Process	52
3.5.2	Engineering Skills	53
3.6	Design Phase	56
3.6.1	Engineering Process	56
3.6.2	Engineering Skills	57
3.7	Build Phase	58
3.7.1	Engineering Process	59
3.7.2	Engineering Skills	59
3.8	Test Phase	60
3.8.1	Engineering Process	60
3.8.2	Engineering Skills	60
3.9	Operate Phase	61
3.9.1	Engineering Process	62
3.9.2	Engineering Skills	63
3.10	Disposal or Retirement Phase	63
3.10.1	Engineering Process	65
3.10.2	Engineering Skills	65
3.11	Refurbishment Phase	65
3.11.1	Engineering Process	66
3.11.2	Engineering Skills	66
3.12	Whole Lifecycle Tasks	66
3.13	Summary	67
	Exercises	69
	References	70
	Further Reading	70
4	Design Drivers	73
4.1	Introduction	73
4.2	Design Drivers in the Business Environment	75
4.2.1	Customer	76
4.2.2	Market and Competition	76

4.2.3	Capacity	77
4.2.4	Financial Issues	77
4.2.5	Defence Policy	78
4.2.6	Leisure and Business Interests	78
4.2.7	Politics	79
4.2.8	Technology	79
4.2.9	Global Economy	80
4.3	Design Drivers in the Project Environment	80
4.3.1	Standards and Regulations	80
4.3.2	Availability	81
4.3.3	Cost	81
4.3.4	Programme	82
4.3.5	Performance	82
4.3.6	Skills and Resources	82
4.3.7	Health, Safety, and Environmental Issues	83
4.3.8	Risk	84
4.4	Design Drivers in the Product Environment	84
4.4.1	Functional Performance	84
4.4.2	Human-Machine Interface	85
4.4.3	Crew and Passengers	86
4.4.4	Stores and Cargo	86
4.4.5	Structure	87
4.4.6	Safety	87
4.4.7	Quality	87
4.4.8	Environmental Conditions	87
4.5	Design Drivers in the Product Operating Environment	88
4.5.1	Heat	88
4.5.2	Noise	89
4.5.3	RF Radiation	89
4.5.4	Solar Energy	90
4.5.5	Altitude	91
4.5.6	Temperature	91
4.5.7	Contaminants, and Destructive and Hazardous Substances	92
4.5.8	Lightning	92
4.5.9	Nuclear, Biological, and Chemical Contamination	92
4.5.10	Vibration	93
4.5.11	Shock	93
4.6	Interfaces with the Sub-system Environment	93
4.6.1	Physical Interfaces	94
4.6.2	Power Interfaces	94
4.6.3	Data Communication Interfaces	95
4.6.4	Input/Output Interfaces	95
4.6.5	Status/Discrete Data	95
4.7	Obsolescence	96
4.7.1	Introduction	96

4.7.2	The Threat of Obsolescence in the Product Lifecycle	97
4.7.2.1	Requirements Specification	98
4.7.2.2	People	99
4.7.2.3	Regulations	101
4.7.2.4	Design, Development, and Manufacture	101
4.7.2.5	The Supply Chain	103
4.7.3	Managing Obsolescence	103
4.8	Ageing Aircraft	106
4.8.1	Introduction	106
4.8.2	Some Examples	107
4.8.3	Systems Issues	108
4.8.4	Certification Issues	109
	Exercises	109
	References	110
	Further Reading	110

5 System Architectures 113

5.1	Introduction	113
5.2	Definitions	114
5.3	System Architectures	115
5.3.1	Vehicle Systems	117
5.3.2	Avionic Systems	118
5.3.3	Mission Systems	118
5.3.4	Cabin Systems	119
5.3.5	Data Bus	119
5.4	Architecture Modelling and Trade-off	120
5.5	Example of a Developing Architecture	123
5.6	Evolution of Avionics Architectures	126
5.6.1	Distributed Analogue Architecture	127
5.6.2	Distributed Digital Architecture	128
5.6.3	Federated Digital Architecture	130
5.6.4	Integrated Modular Architecture	132
5.7	Example Architectures	135
5.7.1	Example 1: System Architecture	135
5.7.2	Example 2: Flight Control System	136
5.7.3	Example 3: Radar System	138
5.7.4	Example 4: Vehicle Systems Management	139
	Exercises	149
	References	149
	Further Reading	149

6 System Integration 151

6.1	Introduction	151
6.2	Definitions	153
6.3	Examples of System Integration	153
6.3.1	Integration at the Component Level	153

6.3.2	Integration at the System Level	154
6.3.3	Integration at the Process Level	160
6.3.4	Integration at the Functional Level	163
6.3.5	Integration at the Information Level	166
6.3.6	Integration at the Prime Contractor Level	166
6.3.7	Integration Arising from Emergent Properties	167
6.3.8	Further Examples of Integrated Systems	169
6.3.8.1	The Airframe	169
6.3.8.2	Propulsion	171
6.3.8.3	Air Systems	171
6.4	System Integration Skills	172
6.5	Management of System Integration	175
6.5.1	Major Activities	175
6.5.2	Major Milestones	175
6.5.3	Decomposition and Definition Process	178
6.5.4	Integration and Verification Process	178
6.5.5	Component Engineering	178
6.6	Highly Integrated Systems	178
6.6.1	Integration of Primary Flight Control Systems	179
6.7	Discussion	182
	Exercises	184
	References	186
	Further Reading	186
7	Verification of System Requirements	187
7.1	Introduction	187
7.2	Gathering Qualification Evidence in the Lifecycle	189
7.3	Test Methods	191
7.3.1	Inspection of Design	192
7.3.2	Calculation	192
7.3.3	Analogy	193
7.3.4	Modelling and Simulation	193
7.3.4.1	Modelling Techniques	197
7.3.5	Test Rigs	206
7.3.6	Environmental Testing	207
7.3.7	Integration Test Rigs	207
7.3.8	Aircraft Ground Testing	209
7.3.9	Flight Test	210
7.3.10	Trials	211
7.3.11	Operational Test	212
7.3.12	Demonstrations	212
7.4	An Example Using a Radar System	212
7.5	Summary	214
	Exercises	215
	References	215
	Further Reading	216

8	Practical Considerations	217
8.1	Introduction	217
8.2	Stakeholders	218
8.2.1	Identification of Stakeholders	218
8.2.2	Classification of Stakeholders	219
8.3	Communications	220
8.3.1	The Nature of Communication	222
8.3.2	Examples of Organisation Communication Media	223
8.3.2.1	Mechanisms for Generating Information	225
8.3.2.2	Unauthorised Access	225
8.3.2.3	Data Storage and Access	226
8.3.2.4	Data Discipline	227
8.3.3	The Cost of Poor Communication	227
8.3.4	A Lesson Learned	228
8.4	Giving and Receiving Criticism	230
8.4.1	The Need for Criticism in the Design Process	230
8.4.2	The Nature of Criticism	230
8.4.3	Behaviours Associated with Criticism	231
8.4.4	Conclusions	232
8.5	Supplier Relationships	232
8.6	Engineering Judgement	234
8.7	Complexity	234
8.8	Emergent Properties	235
8.9	Aircraft Wiring and Connectors	236
8.9.1	Aircraft Wiring	236
8.9.2	Aircraft Breaks	237
8.9.3	Wiring Bundle Definition	238
8.9.4	Wiring Routing	239
8.9.5	Wiring Sizing	239
8.9.6	Aircraft Electrical Signal Types	241
8.9.7	Electrical Segregation	242
8.9.8	The Nature of Aircraft Wiring and Connectors	242
8.9.9	Use of Twisted Pairs and Quads	244
8.10	Bonding and Grounding	246
	Exercise	248
	References	248
	Further Reading	248
9	Configuration Control	249
9.1	Introduction	249
9.2	Configuration Control Process	249
9.3	A Simple Portrayal of a System	250
9.4	Varying System Configurations	252
9.4.1	System Configuration A	252
9.4.2	System Configuration B	253

9.4.3	System Configuration C	254
9.5	Forwards and Backwards Compatibility	255
9.5.1	Forwards Compatibility	255
9.5.2	Backwards Compatibility	256
9.6	Factors Affecting Compatibility	256
9.6.1	Hardware	257
9.6.2	Software	257
9.6.3	Wiring	258
9.7	System Evolution	258
9.8	Configuration Control	259
9.8.1	Airbus A380 Example	261
9.9	Interface Control	264
9.9.1	Interface Control Document	264
9.9.2	Aircraft-level Data Bus Data	266
9.9.3	System Internal Data Bus Data	266
9.9.4	Internal System Input/Output Data	267
9.9.5	Fuel Component Interfaces	267
9.10	Control of Day-to-Day Documents	267
	Exercise	268
10	Aircraft System Examples	269
10.1	Introduction	269
10.2	Design Considerations	269
10.3	Safety and Economic Considerations	271
10.4	Failure Severity Categorisation	272
10.5	Design Assurance Levels	272
10.6	Redundancy	273
10.6.1	Architecture Options	274
10.6.1.1	Simplex Architecture	274
10.6.1.2	Duplex Architecture	276
10.6.1.3	Dual/Dual Architecture	276
10.6.1.4	Triplex Architecture	276
10.6.1.5	Quadruplex Architecture	276
10.6.2	System Examples	277
10.6.2.1	Major Systems Event	277
10.6.2.2	Flight Critical Event	278
10.7	Integration of Aircraft Systems	280
10.7.1	Engine Control System	282
10.7.2	Flight Control System	283
10.7.3	Attitude Measurement System	284
10.7.4	Air Data System	284
10.7.5	Electrical Power System	285
10.7.6	Hydraulic Power System	286
10.8	Integration of Avionics Systems	287
	References	290

11	Integration and Complexity: The Potential Impact on Flight Safety	291
11.1	Introduction	291
11.2	Integration	291
11.3	Complexity	294
11.4	Automation	298
11.5	Impact on Flight Safety Discussion	299
11.6	Single-pilot Operations	302
11.7	Postscript: Chaos Discussion	303
	Exercises	307
	References	307
	Further Reading	308
12	Key Characteristics of Aircraft Systems	309
12.1	Introduction	309
12.2	Aircraft Systems	311
12.3	Avionics Systems	326
12.4	Mission Systems	336
12.5	Sizing and Scoping Systems	343
12.6	Analysis of the Fuel Penalties of Aircraft Systems	345
12.6.1	Introduction	345
12.6.2	Basic Formulation of Fuel Weight Penalties of Systems	346
12.6.3	Application of Fuel Weight Penalties Formulation for Multi-phase Flight	349
12.6.4	Analysis of Fuel Weight Penalties Formulation for Multi-phase Flight	350
12.6.5	Use of Fuel Weight Penalties to Compare Systems	350
12.6.6	Determining Input Data for Systems Weight Penalties Analysis	351
12.6.6.1	Lift/Drag Ratio	351
12.6.6.2	Specific Fuel Consumption	352
12.6.6.3	System Mass	352
12.6.6.4	System Drag Increase	352
12.6.6.5	Increase in sfc Due to Systems Power Off-takes	352
	Nomenclature	354
	References	354
13	Conclusions	357
13.1	What's Next?	359
13.2	A Historical Footnote	361
	References	362
	Index	363