

Contents

<i>List of contributors</i>	<i>page</i>	xi
<i>Preface</i>	<i>page</i>	xiii
1 Introduction	1	
<i>K. Otsuka and C. M. Wayman</i>		
1.1 Invitation to shape memory effect and the notion of martensitic transformation	1	
1.2 Martensitic transformations: crystallography	5	
1.3 Martensitic transformations: thermodynamic aspects	21	
2 Mechanism of shape memory effect and superelasticity	27	
<i>K. Otsuka and C. M. Wayman</i>		
2.1 Stress-induced martensitic transformation and superelasticity	27	
2.2 Shape memory effect	36	
2.3 Rubber-like behavior	44	
3 Ti–Ni shape memory alloys	49	
<i>T. Saburi</i>		
3.1 Structure and transformations	49	
3.2 Mechanical behavior of Ti–Ni alloys	58	
3.3 Ternary alloying	73	
3.4 Self-accommodation in martensites	79	
3.5 All-round shape memory (Two-way shape memory)	84	
3.6 Effects of irradiation on the shape memory behavior	87	
3.7 Sputter-deposited films of Ti–Ni alloys	87	
3.8 Melt-spun ribbons of Ti–Ni alloys	93	
4 Cu-based shape memory alloys	97	
<i>T. Tadaki</i>		
4.1 Phase diagrams of typical Cu-based shape memory alloys	97	
4.2 Mechanical behavior	100	

4.3	Aging effects of shape memory alloys	105
4.4	Thermal cycling effects	109
4.5	Improvements of shape memory alloys	112
5	Ferrous shape memory alloys	117
	<i>T. Maki</i>	
5.1	Morphology and substructure of ferrous martensite	117
5.2	Ferrous alloys exhibiting shape memory effect	118
5.3	Shape memory effect associated with α' thin plate martensite	121
5.4	Shape memory effect associated with ϵ martensite in Fe–Mn–Si alloys	126
6	Fabrication of shape memory alloys	133
	<i>Y. Suzuki</i>	
6.1	Fabrication of Ti–Ni based alloys	134
6.2	Fabrication of Cu–Al–Zn based alloys	143
6.3	Powder metallurgy and miscellaneous methods	145
7	Characteristics of shape memory alloys	149
	<i>J. Van Humbeeck and R. Stalmans</i>	
7.1	Summary of the functional properties	149
7.2	A generalized thermodynamic description of shape memory behaviour	151
7.3	Two-way memory behaviour	159
7.4	Constrained recovery – generation of recovery stresses	162
7.5	The high damping capacity of shape memory alloys	165
7.6	Cycling effects, fatigue and degradation of shape memory alloys	168
7.7	Property values	178
8	Shape memory ceramics	184
	<i>K. Uchino</i>	
8.1	Development trends of new principle actuators	184
8.2	Shape memory ceramics	185
8.3	Sample preparation and experiments	189
8.4	Fundamental properties of the electric field-induced phase transition	190
8.5	Comparison with shape memory alloys	198
8.6	Applications of shape memory ceramics	199
8.7	Conclusions	202
9	Shape memory polymers	203
	<i>M. Irie</i>	
9.1	Shape memory effect of polymer materials	203

9.2	Thermal-responsive shape memory effect	206
9.3	Photo-responsive shape memory effect	212
9.4	Chemo-responsive shape memory effect	218
10	General applications of SMA's and smart materials	220
	<i>K. N. Melton</i>	
10.1	Introduction	220
10.2	History of applications of SMA	221
10.3	SMA couplings	222
10.4	Electrical connectors	226
10.5	Fastener type applications	230
10.6	History of applications of superelasticity	232
10.7	Selection criteria for SMA applications	234
10.8	Smart materials	237
11	The design of shape memory alloy actuators and their applications	240
	<i>I. Ohkata and Y. Suzuki</i>	
11.1	Characteristics of shape memory alloy actuators	240
11.2	The design of shape memory alloy springs	242
11.3	The design of two-way actuators	247
11.4	Shape memory alloy actuator applications	254
12	Medical and dental applications of shape memory alloys	267
	<i>S. Miyazaki</i>	
12.1	Introduction	267
12.2	Application examples	267
12.3	Corrosion resistance	276
12.4	Elution test	278
12.5	Biocompatibility	279
	<i>Index</i>	282