Table of Contents

Eromthe PODISHEE. ve.s o v s sswin s s as 0 S R o 8 R 8 Bl B Xi
Acknowledgments................ A 9 o B 6 Sk i Bk o g § am Xiii
BN T S T e A e TS 7 FIRED e T8 sl e SRR O 1
1. DeducingTypes..........cccevvennn.. s o e wrel va e ¥ e puseoelfeoshe G Mt 9
Item 1: Understand template type deduction. B
Item 2: Understand auto type deduction. 18
Item 3: Understand decltype. 23
Item 4: Know how to view deduced types. 30
2. auto...... A— W 0 8 R W SN B M B B a0 .37
Item 5: Prefer auto to explicit type declarations. 37
Item 6: Use the explicitly typed initializer idiom when auto deduces
undesired types. 43
3. Moving 10 MotlemiCE-4u o sms s s s sis v 500 0 s 2 w0m o 0 50w i wins 8 R 49
Item 7: Distinguish between () and {} when creating objects. 49
Item 8: Prefer nullptr to © and NULL. 58
Item 9: Prefer alias declarations to typedefs. 63
Item 10: Prefer scoped enums to unscoped enums. 67
Item 11: Prefer deleted functions to private undefined ones. 74
Item 12: Declare overriding functions override. 79
Item 13: Prefer const_1iteratorsto iterators. 86
Item 14: Declare functions noexcept if they won’t emit exceptions. 90
Item 15: Use constexpr whenever possible. 97

vii

Item 16: Make const member functions thread safe.
Item 17: Understand special member function generation.

4. SmartPointers............... SRR R AR PP —

Item 18: Use std::unique_ptr for exclusive-ownership resource
management.

Item 19: Use std::shared_ptr for shared-ownership resource
management.

Item 20: Use std::weak_ptr for std: :shared_ptr-like pointers that can
dangle.

Item 21: Prefer std: :make_unique and std: :make_shared to direct use of
new.

Item 22: When using the Pimpl Idiom, define special member functions in
the implementation file.

5. Rvalue References, Move Semantics, and Perfect Forwarding. SERI— i

Item 23: Understand std: :move and std: : forward.

Item 24: Distinguish universal references from rvalue references.

Item 25: Use std: :move on rvalue references, std: : forward on universal
references.

Item 26: Avoid overloading on universal references.

Item 27: Familiarize yourself with alternatives to overloading on universal
references.

Item 28: Understand reference collapsing.

Item 29: Assume that move operations are not present, not cheap, and not
used.

Item 30: Familiarize yourself with perfect forwarding failure cases.

B Lambida EXPrESSIONG. o comwss nmm sucuman sns wwn wms s wnsenoms Suao s 5uanem sy
Item 31: Avoid default capture modes.
Item 32: Use init capture to move objects into closures.
Item 33: Use decltype on auto&& parameters to std: : forward them.
Item 34: Prefer lambdas to std: :bind.

7. The Concurrency APL................ S A S ER N T S s o
Item 35: Prefer task-based programming to thread-based.
Item 36: Specify std: :launch: :async if asynchronicity is essential.
Item 37: Make std: :threads unjoinable on all paths.
Item 38: Be aware of varying thread handle destructor behavior.
Item 39: Consider void futures for one-shot event communication.

vii | Table of Contents

103
109

17

118

125

134

139
147

157
158
164

168
177

184
197

203
207

215
216
224
229
232

241
241
245
250
258
262

Item 40: Use std::atomic for concurrency, volatile for special memory. 271

O, TWIBEKE. s o v 515 5 s v bone b w8 e g w8 wow e N 1|
Item 41: Consider pass by value for copyable parameters that are cheap to

move and always copied. 281

Item 42: Consider emplacement instead of insertion. 292

IR, ¢ i s 5 s i 5 i i i Ssgo i w9 91 o NET S S 303

Table of Contents | ix

