contents

preface xiii

acknowledgments xv

about this book xvii

about the author xx

about the cover illustration — xxi

Hello, world of concurrency in C++! 1
1.1 Whatis concurrency? 2

Concurrency in computer systems 2 = Approaches to
concurrency 4 = Concurrency vs. parallelism 6

1.2 Why use concurrency? 7

Using concurrency for separation of concerns 7 = Using
concurrency for performance: task and data parallelism 8
When not to use concurrency 9

1.3 Concurrency and multithreading in C++ 10

History of multithreading in C++ 10 = Concurrency support in the
C++11 standard 11 = More support for concurrency and
parallelism in C++14 and C++17 12 = Efficiency in the C++
Thread Library 12 = Platform-specific facilities 13

1.4 Getting started 13
Hello, Concurrent World 14

viii CONTENTS

“) Managing threads 16

2.1 Basic thread management 17
Launching a thread 17 = Waiting for a thread to complete 20
Waiting in exceptional circumstances 20 * Running threads in
the background 22

2.2 Passing arguments to a thread function 24

2.3 Transferring ownership of a thread 27

2.4 Choosing the number of threads at runtime 31

2.5 Identifying threads 34

. Sharing data between threads 36

3.1 Problems with sharing data between threads 37

Race conditions 38 = Avoiding problematic race conditions 39

3.2 Protecting shared data with mutexes 40

Using mutexes in C++ 41 = Structuring code for protecting shared
data 42 = Spotting race conditions inherent in interfaces 44
Deadlock: the problem and a solution 51 = Further guidelines
Jor avoiding deadlock 53 = Flexible locking with
std::unique_lock 59 = Transferring mutex ownership between
scopes 61 = Locking at an appropriate granularity 62

3.3 Alternative facilities for protecting shared data 64

Protecting shaved data during initialization 65 = Protecting rarely
updated data structures 68 » Recursive locking 70

1 Synchronizing concurrent operations 72

4.1 Waiting for an event or other condition 73
Waiting for a condition with condition variables 74
Building a thread-safe queue with condition variables 76
4.2 Waiting for one-off events with futures 81

Returning values from background tasks 82 = Associating a task
with a future 84 = Making (std::)promises 87 = Saving an
exception for the future 89 = Waiting from multiple threads 90

4.3 Waiting with a time limit 93

Clocks 93 = Durations 94 = Time points 96 = Functions
that accept timeouts 98

CONTENTS ix

4.4 Using synchronization of operations to simplify code 99

Functional programming with futures 99 = Synchronizing
operations with message passing 104 = Continuation-style
concurrency with the Concurrency TS 108 = Chaining
continuations 110 = Waiting for more than one future 114
Waiting for the first future in a set with when_any 115

Latches and barriers in the Concurrency TS 118 = A basic latch
type: std::experimental::latch 118 = std::experimental::barrier:

a basic barrier 120 = std::experimental::flex_barrier—
std::experimental::barrier’s flexible friend 121

The C++ memory model and operations on atomic types 124

5.1 Memory model basics 125

Objects and memory locations 125 = Objects, memory locations,
and concurrency 126 = Modification orders 127

5.2 Atomic operations and types in C++ 128

The standard atomic types 128 = Operations on
std::atomic_flag 132 = Operations on std::atomic<bool> 134
Operations on std::atomic<T*>: pointer arithmetic 137
Operations on standard atomic integral types 138

The std::atomic<> primary class template 138

Free functions for atomic operations 140

5.3 Synchronizing operations and enforcing ordering 142

The synchronizes-with relationship 143 = The happens-before
relationship 145 = Memory ordering for atomic operations 146
Release sequences and synchronizes-with 164 ® Fences 166
Ordering non-atomic operations with atomics 168 = Ordering
non-atomic operations 169

/. Designing lock-based concurrent data structures 173

6.1 What does it mean to design for concurrency? 174

Guidelines for designing data structures for concurrency 175

6.2 Lock-based concurrent data structures 176

A thread-safe stack using locks 176 = A thread-safe queue using
locks and condition variables 179 = A thread-safe queue using
fine-grained locks and condition variables 183

6.3 Designing more complex lock-based data structures 194

Writing a thread-safe lookup table using locks 194 = Writing a
thread-safe list using locks 199

X CONTENTS

/' Designing lock-free concurrent data structures 205

7.1 Definitions and consequences 206

Types of nonblocking data structures 206 = Lock-free data
structures 207 = Wait-free data structures 208 = The pros and
cons of lock-free data structures 208

7.2 Examples of lock-free data structures 209

Writing a thread-safe stack without locks 210 = Stopping those
pesky leaks: managing memory in lock-free data structures 214
Detecting nodes that can’t be reclaimed using hazard pointers 218
Detecting nodes in use with reference counting 226 = Applying the
memory model to the lock-free stack 232 = Writing a thread-safe
queue without locks 236

7.3 Guidelines for writing lock-free data structures 248

Guideline: use std::memory_order_seq_cst for prototyping 248
Guideline: use a lock-free memory reclamation scheme 248
Guideline: watch out for the ABA problem 249 = Guideline:
identify busy-wait loops and help the other thread 249

4

Designing concurrent code 251

8.1 Techniques for dividing work between threads 252

Dividing data between threads before processing begins 253
Dividing data recursively 254 = Dividing work by task type 258

8.2 Factors affecting the performance of concurrent
code 260

How many processors? 261 = Data contention and cache
pingpong 262 = False sharing 264 = How close is
your data? 265 = Quversubscription and excessive task
switching 266

8.3 Designing data structures for multithreaded
performance 266

Dividing array elements for complex operations 267 = Data access
patterns in other data structures 269

8.4 Additional considerations when designing for
concurrency 270

Exception safety in parallel algorithms 271 = Scalability and
Amdahl’s law 277 = Hiding latency with multiple threads 279
Improving responsiveness with concurrency 280

CONTENTS xi

8.5 Designing concurrent code in practice 282
A parallel implementation of std::for_each 282 = A parallel
implementation of std::find 284 = A parallel implementation of
std::partial_sum 290

() Advanced thread management 300

9.1 Thread pools 301

The simplest possible thread pool 301 = Waiting for tasks
submitted to a thread pool 303 = Tasks that wait for other
tasks 307 = Avoiding contention on the work queue 310
Work stealing 311

9.2 Interrupting threads 315

Launching and interrupting another thread 316 = Detecting
that a thread has been interrupted 318 = Interrupting a
condition variable wait 318 = Interrupting a wait on
std::condition_variable_any 321 = Interrupting other
blocking calls 323 = Handling interruptions 324
Interrupting background tasks on application exit 325

" | Parallel algorithms 327
10.1 Parallelizing the standard library algorithms 327

10.2 Execution policies 328

General effects of specifying an execution policy 328

std::execution::sequenced_policy 330

std::execution::parallel_policy 330

std::execution::parallel_unsequenced_policy 331
10.3 The parallel algorithms from the C++ Standard

Library 331

Examples of using parallel algorithms 334

Counting visits 336
Testing and debugging multithreaded applications 339

11.1 Types of concurrency-related bugs 340
Unwanted blocking 340 = Race conditions 341

11.2 Techniques for locating concurrency-related bugs 342

Reviewing code to locate potential bugs 342 = Locating
concurrency-related bugs by testing 344 = Designing for
testability 346 = Multithreaded testing techniques 347
Structuring multithreaded test code 350 = Testing the performance
of multithreaded code 352

xii CONTENTS

appendix A Brief reference for some C++11 language features 354
appendix B Brief comparison of concurrency libraries 382

appendix C A message-passing framework and complete ATM example 384
appendix D C++ Thread Library reference 401

index 551

