

Contents

Preface	ix
1 Down to Basics: Runoff Processes and the Modelling Process	1
1.1 Why Model?	1
1.2 How to Use This Book	3
1.3 The Modelling Process	3
1.4 Perceptual Models of Catchment Hydrology	6
1.5 Flow Processes and Geochemical Characteristics	14
1.6 Runoff Production and Runoff Routeing	17
1.7 The Problem of Choosing a Conceptual Model	17
1.8 Model Calibration and Validation Issues	19
1.9 Key Points from Chapter One	23
2 Evolution of Rainfall–Runoff Models: Survival of the Fittest?	25
2.1 The Starting Point: The Rational Method	25
2.2 Practical Prediction: Runoff Coefficients and Time Transformations	26
2.3 Variations on the Unit Hydrograph	33
2.4 Early Digital Computer Models: The Stanford Watershed Model and its Descendants	37
2.5 Distributed Process Description Based Models	41
2.6 Simplified Distributed Models Based on Distribution Functions	44
2.7 Recent Developments: What is the Current State of the Art?	45
2.8 Key points from Chapter 2	45
Box 2.1 Linearity, Nonlinearity and Nonstationarity	46
Box 2.2 The Xinanjiang/Arno/VIC Model	47
Box 2.3 Control Volumes and Differential Equations	51
3 Data for Rainfall–Runoff Modelling	53
3.1 Rainfall Data	53

3.2 Discharge Data	57
3.3 Meteorological Data and the Estimation of Interception and Evapotranspiration	58
3.4 Meteorological Data and the Estimation of Snowmelt	63
3.5 Distributing Meteorological Data Within a Catchment	64
3.6 Other Hydrological Variables	64
3.7 Digital Elevation Data	65
3.8 Geographical Information and Data Management Systems	69
3.9 Remote Sensing Data	70
3.10 Key Points from Chapter 3	73
Box 3.1 The Penman–Monteith Combination Equation for Estimating Evapotranspiration Rates	73
Box 3.2 Estimating Interception Losses	77
Box 3.3 Estimating Snowmelt by the Degree-Day Method	80
4 Predicting Hydrographs Using Models Based on Data	85
4.1 Data Availability and Empirical Modelling	85
4.2 Empirical Regression Approaches	86
4.3 Transfer Function Models	88
4.4 Case Study: DBM Modelling of the CI6 Catchment at Llyn Briane, Wales	93
4.5 The TFM Software	96
4.6 Nonlinear and Multiple Input Transfer Functions	96
4.7 Physical Derivation of Transfer Functions	97
4.8 Using Transfer Function Models in Flood Forecasting	102
4.9 Empirical Rainfall–Runoff Models Based on Neural Network Concepts	102
4.10 Key Points from Chapter 4	105
Box 4.1 Linear Transfer Function Models	105
Box 4.2 Use of Transfer Functions to Infer Effective Rainfalls	110
Box 4.3 Time Variable Estimation of Transfer Function Parameters	111
5 Predicting Hydrographs Using Distributed Models Based on Process Descriptions	115
5.1 The Physical Basis of Distributed Models	115
5.2 Physically Based Rainfall–Runoff Models at the Catchment Scale	124
5.3 Case Study: Modelling Flow Processes at Reynolds Creek, Idaho	130
5.4 Case Study: Blind Validation Test of the SHE Model on the Rimbaud Catchment, France	132
5.5 Simplified Distributed Models	136
5.6 Case Study: Modelling Runoff Generation at Walnut Gulch, Arizona	145
5.7 Case Study: Modelling the R-5 Catchment at Chichasha, Oklahoma	148
5.8 Validation or Evaluation of Distributed Models	150

5.9	Discussion of Distributed Models Based on Process Descriptions	152
5.10	Key Points from Chapter 5	153
Box 5.1	Descriptive Equations for Subsurface Flows	154
Box 5.2	Estimating Infiltration Rates at the Soil Surface	156
Box 5.3	Solution of Partial Differential Equations: Some Basic Concepts	161
Box 5.4	Soil Moisture Characteristic Functions for Use in the Richards Equation	166
Box 5.5	Pedotransfer Functions	170
Box 5.6	Descriptive Equations for Surface Flows	172
Box 5.7	Derivation of the Kinematic Wave Equation	176
6	Hydrological Similarity and Distribution Function Rainfall–Runoff Models	179
6.1	Hydrological Similarity and Hydrological Response Units	179
6.2	The Probability Distributed Moisture Model (PDM)	180
6.3	Hydrological Response Unit Models	182
6.4	TOPMODEL	187
6.5	Case Study: Application of TOPMODEL to the Saeternbekken Catchment, Norway	196
6.6	TOPKAPI	200
6.7	Key Points from Chapter 6	202
Box 6.1	The SCS Curve Number Model Revisited	203
Box 6.2	The Theory Underlying TOPMODEL	208
7	Parameter Estimation and Predictive Uncertainty	217
7.1	Parameter Estimation and Predictive Uncertainty	217
7.2	Parameter Response Surfaces and Sensitivity Analysis	219
7.3	Performance Measures and Likelihood Measures	223
7.4	Automatic Optimization Techniques	226
7.5	Recognizing Uncertainty in Models and Data: Reliability Analysis	229
7.6	Model Calibration Using Set Theoretic Methods	231
7.7	Recognizing Equifinality: The GLUE Method	234
7.8	Case Study: An Application of the GLUE Methodology in Modelling the Saeternbekken MINIFELT Catchment, Norway	240
7.9	Dealing with Equifinality in Rainfall–Runoff Modelling	244
7.10	Predictive Uncertainty and Risk	247
7.11	Key Points from Chapter 7	247
Box 7.1	Likelihood Measures for Use in Evaluating Models	248
Box 7.2	Combining Likelihood Measures	253
8	Predicting Floods	255
8.1	Data Requirements for Real-Time Prediction	256

8.2 Rainfall–Runoff Modelling for Flood Forecasting	259
8.3 The Lambert ISO Model	260
8.4 Adaptive Transfer Function Models for Real-Time Forecasting	261
8.5 Case Study: A Real-Time Forecasting System for the Town of Dumfries	262
8.6 Methods for Flood Inundation in Real Time	264
8.7 Flood Frequency Prediction Using Rainfall–Runoff Models	265
8.8 Case Study: Modelling the Flood Frequency Characteristics of the Wye Catchment, Wales	270
8.9 Flood Frequency Estimation Including Snowmelt Events	271
8.10 Hydrological Similarity and Flood Frequency Estimation	272
8.11 Key Points from Chapter 8	273
Box 8.1 Adaptive Gain Parameter Estimation for Real-Time Forecasting	274
9 Predicting the Effects of Change	277
9.1 Predicting the Impacts of Land Use Change	279
9.2 Case Study: Predicting the Impacts of Fire and Logging on the Melbourne Water Supply Catchments	284
9.3 Predicting the Impacts of Climate Change	285
9.4 Case Study: Modelling the Impact of Climate Change on Flood Frequency in the Wye Catchment	293
9.5 Key Points from Chapter 9	294
10 Revisiting the Problem of Model Choice	297
10.1 Model Choice in Rainfall–Runoff Modelling as Hypothesis Testing	297
10.2 The Value of Prior Information	300
10.3 The Ungauged Catchment Problem	301
10.4 Changing Parameter Values and Predictive Uncertainty	302
10.5 Predictive Uncertainty and Model Validation	303
10.6 Final Comments: An Uncertain Future?	304
Appendix A Demonstration Software	307
Appendix B Glossary of Terms	315
References	323
Index	355