

Contents

<i>Contributors</i>	xi
<i>Preface</i>	xiii
PART ONE	
Biomechatronic Design and Components	1
1. Introduction	3
Ahmed R. Arshi	
1 Engineering Approach	5
2 Fusion of Bio and Mechatronics	6
3 Modeling	9
4 Variability	11
5 Integration	11
6 Anatomy of Design	12
7 Developments in Designs	13
8 Energetic Interactions	14
9 Design Philosophy	15
10 Cohesion in Descriptions	16
11 Mechanism of Interconnections	17
12 General Design Methodology	19
13 Summary	27
Further Reading	28
2. Actuator Technologies	31
Reva E. Johnson, Jonathon W. Sensinger	
1 Introduction	31
2 Design Goals of Actuators	32
3 Types of Biomechatronic Actuators	41
4 Purposes of Biomechatronic Actuators	55
5 Conclusion	56
References	57
Further Reading	59

3. Sensors and Transducers	61
Jeff Christenson	
1 Introduction	62
2 Passive Sensors	64
3 Simple Sensors	67
4 Common Sensors	74
5 Biological Sensors	78
6 Other Biological Signal Transducers	86
7 Conclusion	
References	91
Further Reading	91
	93
4. Model-Based Control of Biomechatronic Systems	95
Naser Mehrabi, John McPhee	
1 Biomechatronic System Models	95
2 Model-Based Control Design	101
3 Case Study: Design of Population-Based Electric Power Steering Systems	108
4 Conclusions	122
References	123
Further Reading	126
PART TWO	
Biomechatronic Devices	127
5. Biomechatronic Applications of Brain-Computer Interfaces	129
Domen Novak	
1 BCI Modalities and Signals	130
2 Biomechatronic Applications	144
3 Challenges and Outlook	163
Acknowledgment	168
References	168
6. Upper-Limb Prosthetic Devices	177
Georgios A. Bertos, Evangelos G. Papadopoulos	
1 Introduction	177
2 State of the Art	210
3 Trends for the Future That Can Enable Biomechatronics Upper-Limb Prostheses	227

Authors' Contributions	231
References	231
Further Reading	240
7. Lower-Limb Prosthetics	241
<i>Georgios A. Bertos, Evangelos G. Papadopoulos</i>	
1 History	241
2 How is Success Defined for Lower-Limb Prosthetics?	242
3 Needs/Voice of Customer	244
4 Walking Theory	246
5 Advances in Commercially Available Lower-Limb Prosthetics	255
6 State-of-the-Art Research Threads and Enabling Trends	265
7 Discussion/Realignment	274
Authors' Contributions	274
References	276
8. Upper and Lower Extremity Exoskeletons	283
<i>Andres F. Ruiz-Olaya, Alberto Lopez-Delis, Adson Ferreira da Rocha</i>	
1 Concepts and Fundamentals of Exoskeletons	283
2 A Brief History of Exoskeleton Research	289
3 Design and Implementation of Exoskeletons	297
4 Exoskeletons: Challenges and Trends	305
5 Conclusion	313
References	313
Further Reading	317
9. Upper Extremity Rehabilitation Robots: A Survey	319
<i>Borna Ghannadi, Reza Sharif Razavian, John McPhee</i>	
1 Introduction	319
2 Classification by Mechanical Design	322
3 Classification by Training	325
4 Classification by Form of Rehabilitation	326
5 Classification by Control Scenarios	327
6 Rehabilitation Planning	331
7 Recent Developments and Research Opportunities	332
8 Conclusion	336
Glossary	337
References	338