

contents

1 Evolution by natural selection 3

- Darwin's theory 3
- Evolution *in vitro* 4
- Lamarck, Weismann, and the central dogma 8
- Further reading 12
- Problems 12
- Computer projects 13

2 Models of populations 15

- Models of population growth 15
- Selection in an asexual population 17
- The accuracy of replication 20
- Genetic drift in finite populations 24
- Further reading 27
- Problems 27
- Computer projects 28

3 Evolution in diploid populations 31

- Gene frequencies and the Hardy-Weinberg ratio 31
- The concept of fitness 36
- The spread of a favourable gene 38
- Further reading 45
- Problems 45
- Computer projects 46

4 The variability of natural populations 49

- The evidence for genetic variability 49
- Mutation 53
- The maintenance of variation 64
- Further reading 76
- Problems 76
- Computer projects 77

5 Evolution at more than one locus 81

- Linkage disequilibrium 81
- Heterostyly in plants 84

Mimicry in butterflies	85
Linkage disequilibrium in natural populations	87
Normalizing selection and linkage disequilibrium	88
Further reading	90
Problems	90
Computer projects	91

6 Quantitative genetics 93

Nature and nurture	93
The additive genetic model	95
A more realistic model	108
Experiments in artificial selection	113
Quantitative variation and fitness	117
The maintenance of genetic variation for quantitative traits	118
Further reading	121
Problems	121
Computer projects	122

7 A model of phenotypic evolution 125

The hawk–dove game—a model of contest behaviour	125
Asymmetric games	128
More than two pure strategies	130
Continuously varying strategies	131
Will a sexual population evolve to an ESS?	134
Further reading	135
Problems	135
Computer projects	136

8 Finite and structured populations 139

Inbreeding	139
Genetic drift	143
The rate of neutral molecular evolution	146
Mitochondrial DNA	151
Migration and differentiation between populations	154
The establishment of a new favourable mutation	159
Further reading	160
Problems	160
Computer projects	160

9 Evolution in structured populations 163

Selection in trait groups	163
The evolution of co-operation: synergistic selection	164
The evolution of co-operation: relatedness	167
The group as the unit of evolution	173
The shifting balance theory	179

To Carol and Sue

Further reading 180
Problems 181
Computer projects 182

10 The evolution of prokaryotes 185

The evolution of gene function 185
Phages, plasmids, and transposable elements 187
The evolution of phages and their hosts 189
The evolution of plasmids 190
The evolution of transposons 192
The population genetics of *E. coli* 194
The evolution of viruses 195
Further reading 198
Computer projects 199

11 The evolution of the eukaryotic genome 201

The nature of the genome 201
The haemoglobin gene family 203
Duplication and the increase of DNA content 207
The ribosomal genes 209
Unequal crossing over and gene conversion 210
Repetitive DNA 213
The evolution of chromosome form 219
Further reading 223
Computer projects 223

12 The evolution of genetic systems

I. Sex and recombination 225

The natural history of sex 225
Why not be a parthenogen? 230
The advantages of sex 234
The evolution of recombination 241
Further reading 248

13 The evolution of genetic systems

II. Some consequences of sex 251

The sex ratio 251
Selfing and outcrossing 255
Hermaphroditism 255
Sexual selection 258
Further reading 263
Problems 263
Computer projects 264

14 Macroevolution	267
Species and speciation	267
Patterns of evolution	274
Coevolution	285
Further reading	296
Problems	296
Computer projects	297
15 Reconstructing evolutionary history	300
How to construct a phylogenetic tree	300
The reliability of trees	303
What use are phylogenetic trees?	305
Further reading	306
Answers to problems	307
References	315
Index	323
1 Evolution and adaptation	31
Speciation	32
Evolutionary drift	33
The rate of neutral mutation	33
Allozyme variation	35
Macromutation	35
The establishment of a new favourable mutation	36
Further reading	38
Problems	38
Computer projects	38
2 Fitness and natural selection	51
Speciation	52
Evolutionary drift	53
The rate of neutral mutation	53
Allozyme variation	55
Macromutation	55
The establishment of a new favourable mutation	56
Further reading	58
Problems	58
Computer projects	58
3 Evolution in obscured populations	81
Selfish selflessness	82
The evolution of co-operation	83
The evolution of co-operation, selection	83
The group as the unit of selection	83
The survival of the fittest	83
Further reading	84
Problems	84
Computer projects	84
4 Evolution in open populations	111
Speciation	112
Evolutionary drift	112
The rate of neutral mutation	112
Allozyme variation	113
Macromutation	113
The establishment of a new favourable mutation	114
Further reading	116
Problems	116
Computer projects	116
5 Evolution in fluctuating environments	141
Speciation	142
Evolutionary drift	142
The rate of neutral mutation	142
Allozyme variation	143
Macromutation	143
The establishment of a new favourable mutation	144
Further reading	146
Problems	146
Computer projects	146
6 Evolution in fluctuating environments	171
Speciation	172
Evolutionary drift	172
The rate of neutral mutation	172
Allozyme variation	173
Macromutation	173
The establishment of a new favourable mutation	174
Further reading	176
Problems	176
Computer projects	176
7 Evolution in fluctuating environments	201
Speciation	202
Evolutionary drift	202
The rate of neutral mutation	202
Allozyme variation	203
Macromutation	203
The establishment of a new favourable mutation	204
Further reading	206
Problems	206
Computer projects	206
8 Evolution in fluctuating environments	231
Speciation	232
Evolutionary drift	232
The rate of neutral mutation	232
Allozyme variation	233
Macromutation	233
The establishment of a new favourable mutation	234
Further reading	236
Problems	236
Computer projects	236
9 Evolution in obscured populations	261
Selfish selflessness	262
The evolution of co-operation	263
The evolution of co-operation, selection	263
The group as the unit of selection	263
The survival of the fittest	263
Further reading	265
Problems	265
Computer projects	265