

Contents

5.3	Continuous-Stirred Tank Reactors (CSTRs)	2
5.3.1	A Single CSTR	2
5.3.2	CSTRs in Series	2
5.4	Tubular Reactors	2
5.4.1	Elementary Tubular Reactors	2
5.4.2	Gas-Phase Reactions in a PFR (Plug Flow Reactor)	180
5.4.3	Effect of ϵ on Conversion	180
5.5	Pressure Drop in Reactors	2
5.5.1	Pressure Drop and the Kire Law	2
5.5.2	How Many Pumps? A Word from Our Sponsor	2
5.5.3	Pressure Drop in a PFR (Plug Flow Reactor)	2
5.5.4	Analytical Solution for Reaction with Pressure Drop	194
5.5.5	Robin the Worrier Wonders: What If...	208
5.6	Synthesizing the Design of a Chemical Plant	208
5.7	And Now... A Word from Our Sponsor—Safety	210

INTRODUCTION

ABOUT THE AUTHOR

xix

CHAPTER 1 MOLE BALANCES

1.1	The Rate of Reaction, $-r_A$	4
1.2	The General Mole Balance Equation (GMBE)	8
1.3	Batch Reactors (BRs)	10
1.4	Continuous-Flow Reactors	12
1.4.1	Continuous-Stirred Tank Reactor (CSTR)	12
1.4.2	Tubular Reactor	14
1.4.3	Packed-Bed Reactor (PBR)	18
1.4.4	Well-Mixed "Fluidized" Catalytic Bed Reactor	20
1.5	Industrial Reactors	24
1.6	And Now... A Word from Our Sponsor—Safety (AWFOS-S1 Safety)	25
1.6.1	What Is Chemical Process Safety?	25
1.6.2	Why Study Process Safety?	25

CHAPTER 2 CONVERSION AND REACTOR SIZING

2.1	Definition of Conversion	36
2.2	Batch Reactor Design Equations	36
2.3	Design Equations for Flow Reactors	39
2.3.1	CSTR (Also Known as a Backmix Reactor or a Vat)	40
2.3.2	Tubular Flow Reactor (PFR)	40
2.3.3	Packed-Bed Reactor (PBR)	41
2.4	Sizing Continuous-Flow Reactors	42
7.5.1	Concentration-Time (Q) Plot	279
7.5.2	Model Discretization	279

xxxiii

1

35

2.5	Reactors in Series	51	
2.5.1	CSTRs in Series	52	
2.5.2	PFRs in Series	56	
2.5.3	Combinations of CSTRs and PFRs in Series	57	
2.5.4	Comparing the CSTR and PFR Volumes and Reactor Sequencing	61	
2.6	Some Further Definitions	62	
2.6.1	Space Time	62	
2.6.2	Space Velocity	64	
2.7	And Now... A Word from Our Sponsor—Safety 2 (AWFOS-S2 The NFPA Diamond)	66	
CHAPTER 3 RATE LAWS			75
3.1	Basic Definitions	76	
3.1.1	Relative Rates of Reaction	77	
3.2	The Rate Law	78	
3.2.1	Power Law Models and Elementary Rate Laws	79	
3.2.2	Nonelementary Rate Laws	82	
3.2.3	Reversible Reactions	86	
3.3	The Reaction-Rate Constant	89	
3.3.1	The Rate Constant k and Its Temperature Dependence	89	
3.3.2	Interpretation of the Activation Energy	90	
3.3.3	The Arrhenius Plot	96	
3.4	Molecular Simulations	100	
3.4.1	Historical Perspective	100	
3.4.2	Stochastic Modeling of Reactions	101	
3.5	Present Status of Our Approach to Reactor Sizing and Design	103	
3.6	And Now... A Word from Our Sponsor—Safety 3 (AWFOS-S3 The GHS Diamond)	104	
CHAPTER 4 STOICHIOMETRY			117
4.1	Batch Reactors (BRs)	119	
4.1.1	Batch Concentrations for the Generic Reaction, Equation (2-2)	121	
4.2	Flow Systems	125	
4.2.1	Equations for Concentrations in Flow Systems	126	
4.2.2	Liquid-Phase Concentrations	126	
4.2.3	Gas-Phase Concentrations	127	
4.3	Reversible Reactions and Equilibrium Conversion	138	
4.4	And Now... A Word from Our Sponsor—Safety 4 (AWFOS-S4 The Swiss Cheese Model)	143	
CHAPTER 5 ISOTHERMAL REACTOR DESIGN: CONVERSION			155
5.1	Design Structure for Isothermal Reactors	156	
5.2	Batch Reactors (BRs)	160	
5.2.1	Batch Reaction Times	161	

5.3	Continuous-Stirred Tank Reactors (CSTRs)	168
5.3.1	A Single CSTR	168
5.3.2	CSTRs in Series	171
5.4	Tubular Reactors	178
5.4.1	Liquid-Phase Reactions in a PFR $\therefore v = v_0$	179
5.4.2	Gas-Phase Reactions in a PFR $[v = v_0(1 + \epsilon X)(T/T_0)(P_0/P)]$	180
5.4.3	Effect of ϵ on Conversion	180
5.5	Pressure Drop in Reactors	185
5.5.1	Pressure Drop and the Rate Law	185
5.5.2	Flow Through a Packed Bed	187
5.5.3	Pressure Drop in Pipes	191
5.5.4	Analytical Solution for Reaction with Pressure Drop	194
5.5.5	Robert the Worrier Wonders: What If...	198
5.6	Synthesizing the Design of a Chemical Plant	208
5.7	And Now... A Word from Our Sponsor—Safety 5 (AWFOS-S5 A Safety Analysis of the Incident Algorithm)	210

CHAPTER 6 ISOTHERMAL REACTOR DESIGN: MOLES AND MOLAR FLOW RATES

229

6.1	The Moles and Molar Flow Rate Balance Algorithms	230
6.2	Mole Balances on CSTRs, PFRs, PBRs, and Batch Reactors	230
6.2.1	Liquid Phase	230
6.2.2	Gas Phase	232
6.3	Application of the PFR Molar Flow Rate Algorithm to a Microreactor	234
6.4	Membrane Reactors	239
6.5	Unsteady-State Operation of Stirred Reactors	248
6.6	Semibatch Reactors	249
6.6.1	Motivation for Using a Semibatch Reactor	249
6.6.2	Semibatch Reactor Mole Balances	249
6.6.3	Equilibrium Conversion	255
6.7	And Now... A Word from Our Sponsor—Safety 6 (AWFOS-S6 The BowTie Diagram)	256

CHAPTER 7 COLLECTION AND ANALYSIS OF RATE DATA

269

7.1	The Algorithm for Data Analysis	270
7.2	Determining the Reaction Order for Each of Two Reactants Using the Method of Excess	272
7.3	Integral Method	273
7.4	Differential Method of Analysis	277
7.4.1	Graphical Differentiation Method	278
7.4.2	Numerical Method	278
7.4.3	Finding the Rate-Law Parameters	279
7.5	Nonlinear Regression	284
7.5.1	Concentration–Time Data	287
7.5.2	Model Discrimination	290

7.6	Reaction-Rate Data from Differential Reactors	290
7.7	Experimental Planning	297
7.8	And Now... A Word from Our Sponsor—Safety 7 (AWFOS-S7 Laboratory Safety)	297

CHAPTER 8 MULTIPLE REACTIONS

309

8.1	Definitions	310
8.1.1	Types of Reactions	310
8.1.2	Selectivity	311
8.1.3	Yield	312
8.1.4	Conversion	313
8.2	Algorithm for Multiple Reactions	313
8.2.1	Modifications to the Chapter 6 CRE Algorithm for Multiple Reactions	314
8.3	Parallel Reactions	316
8.3.1	Selectivity	316
8.3.2	Maximizing the Desired Product for One Reactant	316
8.3.3	Reactor Selection and Operating Conditions	322
8.4	Reactions in Series	325
8.5	Complex Reactions	335
8.5.1	Complex Gas-Phase Reactions in a PBR	335
8.5.2	Complex Liquid-Phase Reactions in a CSTR	339
8.5.3	Complex Liquid-Phase Reactions in a Semibatch Reactor	341
8.6	Membrane Reactors to Improve Selectivity in Multiple Reactions	343
8.7	Sorting It All Out	348
8.8	The Fun Part	348
8.9	And Now... A Word from Our Sponsor—Safety 8 (AWFOS-S8 The Fire Triangle)	349
8.9.1	The Fire Triangle	350
8.9.2	Defining Some Important Terms	350
8.9.3	Ways to Prevent Fires	350
8.9.4	Ways to Protect from Fires	351

CHAPTER 9 REACTION MECHANISMS, PATHWAYS, BIOREACTIONS, AND BIOREACTORS

367

9.1	Active Intermediates and Nonelementary Rate Laws	368
9.1.1	Pseudo-Steady-State Hypothesis (PSSH)	369
9.1.2	If Two Molecules Must Collide, How Can the Rate Law Be First Order?	372
9.1.3	Searching for a Mechanism	373
9.1.4	Chain Reactions	377
9.2	Enzymatic Reaction Fundamentals	377
9.2.1	Enzyme-Substrate Complex	378
9.2.2	Mechanisms	380
9.2.3	Michaelis-Menten Equation	383
9.2.4	Batch Reactor Calculations for Enzyme Reactions	389

9.3	Inhibition of Enzyme Reactions	391
9.3.1	Competitive Inhibition	392
9.3.2	Uncompetitive Inhibition	394
9.3.3	Noncompetitive Inhibition (Mixed Inhibition)	396
9.3.4	Substrate Inhibition	398
9.4	Bioreactors and Biosynthesis	399
9.4.1	Cell Growth	403
9.4.2	Rate Laws	404
9.4.3	Stoichiometry	407
9.4.4	Mass Balances	413
9.4.5	Chemostats	418
9.4.6	CSTR Bioreactor Operation	418
9.4.7	Washout	419
9.5	And Now... A Word from Our Sponsor—Safety (AWFOS-S9 Process Safety Triangle)	422
9.5.1	Levels of the Process Safety Triangle	422
9.5.2	Application to Process Safety	423
9.5.3	Examples of Process Safety Triangle	424
CHAPTER 10 CATALYSIS AND CATALYTIC REACTORS		441
10.1	Catalysts	441
10.1.1	Definitions	442
10.1.2	Catalyst Properties	443
10.1.3	Catalytic Gas–Solid Interactions	445
10.1.4	Classification of Catalysts	446
10.2	Steps in a Catalytic Reaction	447
10.2.1	Mass Transfer Step 1: Diffusion from the Bulk to the External Surface of the Catalyst—An Overview	450
10.2.2	Mass Transfer Step 2: Internal Diffusion—An Overview	451
10.2.3	Adsorption Isotherms	452
10.2.4	Surface Reaction	458
10.2.5	Desorption	460
10.2.6	The Rate-Limiting Step	461
10.3	Synthesizing a Rate Law, Mechanism, and Rate-Limiting Step	463
10.3.1	Is the Adsorption of Cumene Rate-Limiting?	466
10.3.2	Is the Surface Reaction Rate-Limiting?	470
10.3.3	Is the Desorption of Benzene the Rate-Limiting Step (RLS)?	471
10.3.4	Summary of the Cumene Decomposition	473
10.3.5	Reforming Catalysts	474
10.3.6	Rate Laws Derived from the Pseudo-Steady-State Hypothesis (PSSH)	478
10.3.7	Temperature Dependence of the Rate Law	479
10.4	Heterogeneous Data Analysis for Reactor Design	479
10.4.1	Deducing a Rate Law from the Experimental Data	481
10.4.2	Finding a Mechanism Consistent with Experimental Observations	482
10.4.3	Evaluation of the Rate-Law Parameters	484
10.4.4	Reactor Design	486

10.5	Reaction Engineering in Microelectronic Fabrication	490
10.5.1	Overview	490
10.5.2	Chemical Vapor Deposition (CVD)	490
10.6	Model Discrimination	493
10.7	Catalyst Deactivation	496
10.7.1	Types of Catalyst Deactivation	498
10.7.2	Decay in Packed-Bed Reactors	505
10.8	Reactors That Can Be Used to Help Offset Catalyst Decay	507
10.8.1	Temperature-Time Trajectories	508
10.8.2	Moving-Bed Reactors	510
10.8.3	Straight-Through Transport Reactors (STTR)	515
10.9	And Now... A Word from Our Sponsor—Safety 10 (AWFOS-S10 Exxon Mobil Torrance Refinery Explosion Involving a Straight-Through Transport Reactor [STTR])	519

CHAPTER 11 NONISOTHERMAL REACTOR DESIGN: THE STEADY-STATE ENERGY BALANCE AND ADIABATIC PFR APPLICATIONS

541

11.1	Rationale	542
11.2	The Energy Balance	543
11.2.1	First Law of Thermodynamics	543
11.2.2	Evaluating the Work Term	544
11.2.3	Overview of Energy Balances	546
11.3	The User-Friendly Energy Balance Equations	551
11.3.1	Dissecting the Steady-State Molar Flow Rates to Obtain the Heat of Reaction	551
11.3.2	Dissecting the Enthalpies	553
11.3.3	Relating $\Delta H_{Rx}(T)$, $\Delta H_{Rx}^0(T_R)$, and ΔC_p	554
11.4	Adiabatic Operation $\therefore Q = 0$	557
11.4.1	Adiabatic Energy Balance	557
11.4.2	Adiabatic Tubular Reactor	558
11.5	Adiabatic Equilibrium Conversion	566
11.5.1	Equilibrium Conversion	566
11.6	Reactor Staging with Interstage Cooling or Heating	571
11.6.1	Exothermic Reactions	571
11.6.2	Endothermic Reactions	571
11.7	Optimum Feed Temperature	575
11.8	And Now... A Word from Our Sponsor—Safety 11 (AWFOS-S11 Acronyms)	579

CHAPTER 12 STEADY-STATE NONISOTHERMAL REACTOR DESIGN: FLOW REACTORS WITH HEAT EXCHANGE

591

12.1	Steady-State Tubular Reactor with Heat Exchange	592
12.1.1	Deriving the Energy Balance for a PFR	592
12.1.2	Applying the Algorithm to Flow Reactors with Heat Exchange	594
12.2	Balance on the Heat-Transfer Fluid	595
12.2.1	Co-Current Flow	595
12.2.2	Countercurrent Flow	597

CHAPTER 12	12.3 Examples of the Algorithm for PFR/PBR Design with Heat Effects	598	843
	12.3.1 Applying the Algorithm to an Exothermic Reaction	603	
	12.3.2 Applying the Algorithm to an Endothermic Reaction	610	
12.4 CSTR with Heat Effects	619		
	12.4.1 Heat Added to the Reactor, Q	620	
12.5 Multiple Steady States (MSS)	630		
	12.5.1 Heat-Removed Term, $R(T)$	632	
	12.5.2 Heat-Generated Term, $G(T)$	633	
	12.5.3 Ignition-Extinction Curve	634	
12.6 Nonisothermal Multiple Chemical Reactions	637		
	12.6.1 Energy Balance for Multiple Reactions in Plug-Flow Reactors	637	
	12.6.2 Energy Balance for Multiple Reactions in a CSTR	642	
	12.6.3 Series Reactions in a CSTR	642	
	12.6.4 Complex Reactions in a PFR	645	
12.7 Radial and Axial Temperature Variations in a Tubular Reactor	652		
12.8 And Now... A Word from Our Sponsor—Safety 12			
	(AWFOS-S12 Safety Statistics)	652	
	12.8.1 The Process Safety Across the Chemical Engineering Curriculum Web site	652	
	12.8.2 Safety Statistics	653	
	12.8.3 Additional Resources CCPS and SACHE	654	
CHAPTER 13	UNSTEADY-STATE NONISOTHERMAL REACTOR DESIGN	681	
13.1 The Unsteady-State Energy Balance	682		
13.2 Energy Balance on Batch Reactors (BRs)	684		
	13.2.1 Adiabatic Operation of a Batch Reactor	686	
	13.2.2 Case History of a Batch Reactor with Interrupted Isothermal Operation Causing a Runaway Reaction	693	
13.3 Batch and Semibatch Reactors with a Heat Exchanger	700		
	13.3.1 Startup of a CSTR	702	
	13.3.2 Semibatch Operation	707	
13.4 Nonisothermal Multiple Reactions	711		
13.5 And Now... A Word from Our Sponsor—Safety 13			
	(AWFOS-S13 Safety Analysis of the T2 Laboratories Incident)	723	
CHAPTER 14	MASS TRANSFER LIMITATIONS IN REACTING SYSTEMS	739	
14.1 Diffusion Fundamentals	740		
	14.1.1 Definitions	741	
	14.1.2 Molar Flux: W_A	742	
	14.1.3 Fick's First Law	743	
14.2 Binary Diffusion	744		
	14.2.1 Evaluating the Molar Flux	744	
	14.2.2 Diffusion and Convective Transport	744	
	14.2.3 Boundary Conditions	746	
	14.2.4 Temperature and Pressure Dependence of D_{AB}	746	

14.3	Modeling Diffusion with Chemical Reaction	748
14.3.1	Diffusion through a Stagnant Film to a Particle	748
14.4	The Mass Transfer Coefficient	750
14.5	Mass Transfer to a Single Particle	752
14.5.1	First-Order Rate Laws	752
14.5.2	Limiting Regimes	754
14.6	The Shrinking Core Model	758
14.6.1	Dust Explosions, Particle Dissolution, and Catalyst Regeneration	758
14.7	Mass Transfer-Limited Reactions in Packed Beds	763
14.8	Robert the Worrier	766
14.9	What If . . .? (Parameter Sensitivity)	770
14.10	And Now... A Word from Our Sponsor—Safety 14 (AWFOS-S14 Sugar Dust Explosion)	778

CHAPTER 15 DIFFUSION AND REACTION

791

15.1	Diffusion and Reactions in Homogeneous Systems	792
15.2	Diffusion and Reactions in Spherical Catalyst Pellets	793
15.2.1	Effective Diffusivity	793
15.2.2	Derivation of the Differential Equation Describing Diffusion and Reaction in a Single Spherical Catalyst Pellet	795
15.2.3	Writing the Diffusion with the Catalytic Reaction Equation in Dimensionless Form	798
15.2.4	Solution to the Differential Equation for a First-Order Reaction	801
15.3	The Internal Effectiveness Factor	802
15.3.1	Isothermal First-Order Catalytic Reactions	802
15.3.2	Effectiveness Factors with Volume Change with Reaction	806
15.3.3	Internal-Diffusion-Limited Reactions Other Than First Order	806
15.3.4	Weisz-Prater Criterion for Internal Diffusion Limitations	807
15.4	Falsified Kinetics	809
15.5	Overall Effectiveness Factor	811
15.6	Estimation of Diffusion- and Reaction-Limited Regimes	816
15.6.1	Mears Criterion for External Diffusion Limitations	816
15.7	Mass Transfer and Reaction in a Packed Bed	817
15.8	Determination of Limiting Situations from Reaction-Rate Data	823
15.9	Multiphase Reactors in the Professional Reference Shelf	824
15.9.1	Slurry Reactors	825
15.9.2	Trickle Bed Reactors	826
15.10	Fluidized Bed Reactors	826
15.11	Chemical Vapor Deposition (CVD)	826
15.12	And Now... A Word from Our Sponsor—Safety 15 (AWFOS-S15 Critical Thinking Questions Applied to Safety)	826

CHAPTER 16 RESIDENCE TIME DISTRIBUTIONS OF CHEMICAL REACTORS	843
16.1 General Considerations	844
16.1.1 Residence Time Distribution (RTD) Function	845
16.2 Measurement of the RTD	846
16.2.1 Pulse Input Experiment	847
16.2.2 Step Tracer Experiment	852
16.3 Characteristics of the RTD	853
16.3.1 Integral Relationships	853
16.3.2 Mean Residence Time	854
16.3.3 Other Moments of the RTD	855
16.3.4 Normalized RTD Function, $E(\Theta)$	859
16.3.5 Internal-Age Distribution, $I(\alpha)$	859
16.4 RTD in Ideal Reactors	860
16.4.1 RTDs in Batch and Plug-Flow Reactors	860
16.4.2 Single-CSTR RTD	861
16.4.3 Laminar-Flow Reactor (LFR)	863
16.5 PFR/CSTR Series RTD	866
16.6 Diagnostics and Troubleshooting	869
16.6.1 General Comments	869
16.6.2 Simple Diagnostics and Troubleshooting Using the RTD for Ideal Reactors	870
16.7 And Now... A Word from Our Sponsor—Safety 16 (AWFOS-S16 Critical Thinking Actions)	876
CHAPTER 17 PREDICTING CONVERSION DIRECTLY FROM THE RESIDENCE TIME DISTRIBUTION	887
17.1 Modeling Nonideal Reactors Using the RTD	888
17.1.1 Modeling and Mixing Overview	888
17.1.2 Mixing	888
17.2 Zero Adjustable Parameter Models	890
17.2.1 Segregation Model	890
17.2.2 Maximum Mixedness Model	900
17.3 Using Software Packages Such as Polymath to Find Maximum Mixedness Conversion	907
17.3.1 Comparing Segregation and Maximum Mixedness Predictions	909
17.4 Tanks-in-Series One Parameter Model, n	910
17.4.1 Find the Number of T-I-S to Model the Real Reactor	910
17.4.2 Calculating Conversion for the T-I-S Model	912
17.4.3 Tanks-in-Series versus Segregation for a First-Order Reaction	912
17.5 RTD and Multiple Reactions	912
17.5.1 Segregation Model	912
17.5.2 Maximum Mixedness	913
17.6 And Now... A Word from Our Sponsor—Safety 17 (AWFOS-S17 Brief Case History on an Air Preheater)	917

CHAPTER 18	MODELS FOR NONIDEAL REACTORS	929
18.1	Some Guidelines for Developing Models	930
18.1.1	One-Parameter Models	932
18.1.2	Two-Parameter Models	932
18.2	Flow and Axial Dispersion of Inert Tracers in Isothermal Reactors	933
18.2.1	Balances on Inert Tracers	933
18.2.2	Boundary Conditions for Flow and Reaction	935
18.3	Flow, Reaction, and Axial Dispersion	937
18.3.1	Balance Equations	937
18.3.2	Solution for a Closed-Closed System	938
18.4	Flow, Reaction, and Axial Dispersion in Isothermal Laminar-Flow Reactors and Finding Meno	941
18.4.1	Determine the Dispersion Coefficient (D_a) and the Péclet Number (Pe_r)	941
18.4.2	Correlations for D_a	944
18.4.3	Dispersion in Packed Beds	944
18.4.4	Experimental Determination of D_a	944
18.5	Tanks-in-Series Model versus Dispersion Model	951
18.6	Numerical Solutions to Flows with Dispersion and Reaction	952
18.7	Nonisothermal Flow with Radial and Axial Variations in a Tubular Reactor	956
18.7.1	Molar Flux	956
18.7.2	Energy Flux	958
18.7.3	Energy Balance	958
18.8	Two-Parameter Models—Modeling Real Reactors with Combinations of Ideal Reactors	964
18.8.1	Real CSTR Modeled Using Bypassing and Dead Space	965
18.8.2	Real CSTR Modeled as Two CSTRs with Interchange	968
18.8.3	Other Models of Nonideal Reactors Using CSTRs and PFRs	972
18.8.4	Applications to Pharmacokinetic Modeling	973
18.9	And Now... A Word from Our Sponsor—Safety 18 (AWFOS-S18 An Algorithm for Management of Change (MoC))	974
APPENDIX A	NUMERICAL TECHNIQUES	991
A.1	Useful Integrals in Chemical Reactor Design	991
A.2	Equal-Area Graphical Differentiation	992
A.3	Solutions to Differential Equations	994
A.3.A	First-Order Ordinary Differential Equations	994
A.3.B	Coupled Differential Equations	994
A.3.C	Second-Order Ordinary Differential Equations	995
A.4	Numerical Evaluation of Integrals	995
A.5	Semi-Log Graphs	997
A.6	Software Packages	997
APPENDIX B	IDEAL GAS CONSTANT AND CONVERSION FACTORS	999

APPENDIX C	THERMODYNAMIC RELATIONSHIPS INVOLVING THE EQUILIBRIUM CONSTANT	1003
APPENDIX D	SOFTWARE PACKAGES	1009
D.1 Polymath 1009		
D.1.A About Polymath (http://www.umich.edu/~elements/6e/software/polymath.html) 1009		
D.1.B Polymath Tutorials (http://www.umich.edu/~elements/6e/software/polymath-tutorial.html) 1010		
D.1.C Living Example Problems 1010		
D.2	Wolfram 1010	
D.3	Python 1011	
D.4	MATLAB 1011	
D.5	Excel 1011	
D.6	COMSOL (http://www.umich.edu/~elements/6e/12chap/comsol.html) 1012	
D.7	Aspen 1013	
D.8	Visual Encyclopedia of Equipment—Reactors Section 1013	
D.9	Reactor Lab 1013	
APPENDIX E	RATE-LAW DATA	1015
APPENDIX F	NOMENCLATURE	1017
APPENDIX G	OPEN-ENDED PROBLEMS	1021
G.1	Chem-E-Car 1021	
G.2	Effective Lubricant Design 1021	
G.3	Peach Bottom Nuclear Reactor 1021	
G.4	Underground Wet Oxidation 1022	
G.5	Hydrodesulfurization Reactor Design 1022	
G.6	Continuous Bioprocessing 1022	
G.7	Methanol Synthesis 1022	
G.8	Cajun Seafood Gumbo 1022	
G.9	Alcohol Metabolism 1023	
G.10	Methanol Poisoning 1024	
G.11	Safety 1024	
APPENDIX H	USE OF COMPUTATIONAL CHEMISTRY SOFTWARE PACKAGES	1025
H.1	Computational Chemical Reaction Engineering 1025	
APPENDIX I	HOW TO USE THE CRE WEB RESOURCES	1027
I.1	CRE Web Resources Components 1027	
INDEX		1029