

Contents

1	Introduction of Organosilicon Materials	1
	<i>Huihui Shi, Jing Yang, Zibiao Li, and Chaobin He</i>	
1.1	Introduction	1
1.2	Synthesis of Polymeric Organosilicon Materials	2
1.2.1	Polysiloxanes	3
1.2.2	Polysilsesquioxanes	5
1.2.3	Other Polymeric Organosilicon Materials	7
1.3	Applications	10
1.3.1	Biomaterials	10
1.3.2	Optical and Electronic Materials	13
1.3.3	Surface Modification	15
1.4	Conclusion and Outlook	18
	References	18
2	Reactive Functionally Terminated Polyorganosiloxanes	23
	<i>Yuanyuan Pang, Junqiang Justin Koh, Zibiao Li, and Chaobin He</i>	
2.1	Types of Functionalized Polysiloxane and Their Synthesis	23
2.1.1	Types of Functional Polysiloxanes	23
2.1.2	Polysiloxane with Monofunctional Terminals	25
2.1.3	Polysiloxane with Difunctional Terminals	25
2.1.4	Polysiloxane with Functional Side Groups	27
2.2	Functionalized Polysiloxane as Macromers	30
2.2.1	Modifying Degree of Polymerization of Functionalized Polysiloxanes	30
2.2.2	Cross-Linking of Functionalized Polysiloxanes	30
2.2.3	Polysiloxane-Containing Block and Graft Copolymers	35
2.2.3.1	Polysiloxane-Containing Segmented and Multiblock Copolymers by Step-Growth Polymerization	35
2.2.3.2	Polysiloxane-Containing Graft Copolymers	41
2.2.3.3	Polysiloxane-Containing Copolymers by Hydrosilylation and Click Chemistry	42
2.3	Functionalized Polysiloxane as Macroinitiators and Macrochain Transfer Agents	43
2.3.1	Conventional Radical Polymerization	43
2.3.2	Controlled Radical Polymerization	45

2.3.2.1	Atom Transfer Radical Polymerization (ATRP)	45
2.3.2.2	Reversible Addition Fragmentation Chain Transfer (RAFT) Polymerization	47
2.3.2.3	Other Controlled Radical Polymerization Methods	50
2.3.3	Ring-Opening Polymerization (ROP)	50
	References	54
3	Functionalized Polyhedral Oligomeric Silsesquioxanes (POSS) and Copolymers: Methods and Advances	63
	<i>Huihui Shi, Jing Yang, Zibiao Li, and Chaobin He</i>	
3.1	Introduction	63
3.2	Synthetic Strategies for Functionalized POSS	64
3.2.1	Octafunctional POSS	65
3.2.1.1	Hydrolysis and Condensation from RSiX_3 Monomer	65
3.2.1.2	Modification of Substituents	66
3.2.2	Monofunctional POSS	71
3.2.2.1	Corner Capping of $\text{T}_7\text{R}_7(\text{OH})_3$	71
3.2.2.2	Modification of Substituents	73
3.2.3	Bifunctional POSS	73
3.2.3.1	Some Special Cases	73
3.2.3.2	Some Developing New Strategies	74
3.3	Synthetic Protocols for Hybrid POSS-containing Polymers	76
3.3.1	Preparation from Monomers	78
3.3.1.1	Radical Polymerization	79
3.3.1.2	Ring-Opening Polymerization	81
3.3.1.3	Step-Growth Polymerization	83
3.3.1.4	Other Polymerization Methods	86
3.3.2	Preparation from Polymers	87
3.3.2.1	By Conventional Organic Reactions	87
3.3.2.2	Some Advanced Methods	91
3.4	Conclusion	91
	References	91
4	Nanostructured Self-assemblies from Silicon-containing Hybrid Copolymers	97
	<i>Hong Chi, Beng Hoon Tan, Fuke Wang, Chaobin He, and Zibiao Li</i>	
4.1	Introduction	97
4.2	Mechanism in Self-assembly of POSS and PDMS-Based Copolymers	99
4.2.1	Stimuli-Responsive Micelles	100
4.2.1.1	pH-Sensitive Micelles	100
4.2.1.2	Thermosensitive Micelles	103
4.2.1.3	Photoactive Micelles	104
4.2.2	Other Mechanisms in Different Assemblies	104
4.2.2.1	Micelles	104
4.2.2.2	Spheres	105
4.2.2.3	Sheets	106

4.3	Application	107
4.3.1	Biomedical Applications	107
4.3.2	Photodynamic Therapy	109
4.3.3	Coating	111
4.3.4	Optical Sensors	112
4.4	Conclusions and Perspectives	113
	References	113
5	Superhydrophobic Materials Derived from Hybrid Silicon Copolymers	119
	<i>Lu Jiang, Xian Jun Loh, Chaobin He, and Zibiao Li</i>	
5.1	Introduction	119
5.2	Hybrid Silicon Copolymer Materials with Superhydrophobic Property	120
5.2.1	PDMS-Incorporated Hybrid Copolymer Materials	120
5.2.2	POSS-Incorporated Hybrid Copolymer Materials	122
5.3	Application of Superhydrophobic Silicon Copolymer Materials	128
5.3.1	Oil–Water Separation	128
5.3.1.1	PDMS-Based Superhydrophobic Materials	131
5.3.1.2	POSS-Based Superhydrophobic Materials	135
5.3.2	Self-cleaning and Antifouling	136
5.3.3	Anticorrosion	137
5.3.4	Other Applications	138
5.4	Conclusion	140
	References	140
6	Silicone Copolymers for Healthcare and Personal Care Applications	145
	<i>Weiren Cheng, Dan Kai, Xian Jun Loh, Chaobin He, and Zibiao Li</i>	
6.1	Silicone Copolymers for Biomedical and Healthcare Applications	145
6.1.1	Adsorption and Cell Interaction on Silicone Copolymer Surface	145
6.1.1.1	Antifouling Effect of Silicone Copolymer Surfaces	148
6.1.1.2	Antibacterial Effect of Silicone Copolymer Surfaces	148
6.1.1.3	Silicone Copolymers in Tissue Engineering and Regenerative Medicine	150
6.1.1.4	Silicone Copolymers Based Bio-coating	150
6.1.2	Self-assembly with Silicone Copolymers	152
6.1.2.1	Silicone Copolymers for Drug Delivery and Bioimaging	153
6.1.2.2	Silicone Copolymers in the Construction of Artificial Cells	154
6.2	Silicone for Personal Care Applications	157
6.2.1	Silicone Oil Emulsions	157
6.2.2	Silicone Copolymers as Surfactants	158
6.2.3	Silicone for Hair Care	159
6.2.4	Strategies for Depositing Silicone on Hair	160
6.2.5	Silicone for Skin Care Applications	161
6.3	Conclusions	162
	References	163

7	Construction of Organic Optoelectronic Materials by Using Polyhedral Oligomeric Silsesquioxanes (POSS)	167
	<i>Fuke Wang, Xuehong Lu, Zibiao Li, and Chaobin He</i>	
7.1	Unique Properties of POSS for Building Organic Optoelectronic Materials	167
7.2	POSS-Based Organic Electroluminescence Materials	171
7.3	POSS as a Building Block for Electrochromic Materials	181
7.4	Other Applications of POSS in Organic Optoelectronic Materials	189
7.5	Conclusions	195
	References	196
8	Hybrid POSS Nanocomposites: An Overview of Material Toughening and Fire Retardancy	201
	<i>Junhua Kong, Beng H. Tan, Xuehong Lu, Zibiao Li, and Chaobin He</i>	
8.1	Introduction	201
8.2	Polypropylene/POSS Composites	202
8.3	Polycarbonate/POSS Composites	206
8.4	Polystyrene/POSS Composites	211
8.5	Polyester/POSS Composites	216
8.6	Polyepoxides/POSS Composites	220
8.7	Summary	233
	References	233
9	3D Printing Silicone Materials and Devices	239
	<i>Jayven Yeo, Junqiang Justin Koh, Fuke Wang, Zibiao Li, and Chaobin He</i>	
9.1	Introduction	239
9.2	Extrusion-Based Printing	240
9.2.1	Fused Deposition Modeling (FDM)	240
9.2.2	Direct Ink Writing (DIW)	242
9.2.2.1	Rheology-Controlled Shape Retention	242
9.2.2.2	Coaxial Printing	245
9.2.2.3	Embedded 3D Printing	245
9.3	Jetting-Based Printing	247
9.3.1	Inkjet 3D Printing (IJP)	247
9.3.2	Aerosol Jet Printing (AJP)	249
9.4	Vat Photopolymerization/Light-Based/Photocurable 3D Printing	251
9.4.1	Stereolithography (SLA)	252
9.4.2	Digital Light Processing (DLP)	252
9.4.3	Photopolymerization Process	252
9.4.3.1	Photoinitiator	253
9.4.3.2	Photocurable Polymers	254
9.5	Potential Applications	260
	References	261